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@ | ask for more information because | am unable to unscrew the
unscrutable —S. Ervin

10.1 INTRODUCTION

Now we know how to translate research hypotheses into the language of
statistical inference and how to test some of the more elementary propositions.
The null hypothesis, you will remember, posits an expected value of some
population parameter, and the alternative hypothesis covers the other potential
values of that parameter. Once the variability of the sampling distribution is
determined from the Central Limit Theorem, the z-value I8 compared with a
predetermined level of statistical significance. In this manner decisions can be
rendered regarding the credibility of null hypotheses based upon the sample at
hand. 1
But here we encounter yet another snag. It seems that all the examples
considered thus far have assumed that ¢ is known. At the time, of course, | did '
not explain just how we came to know o; | just stated an arbitrary value. &
Unfortunately, such is rarely the case in actual research, and we must now face |
the practical difficulty of modifying what we have already learned to account for
a more realistic application. Specifically, we must assess the impact of substitut-
ing S for ¢ in computing the standardized normal deviate z.

10.2 THE t-DISTRIBUTION

Chapter 8 established that the standard error is really just the standard
deviation of the sampling distribution of sample means:

Ty
o = ——=
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So . applies to the theoretically infinite population of sample means. But when
« 15 unknown, then the standard error must be estimated from the sample data
at hand The best estimate of the standard error of the mean is

_ S«
Vn

5S¢ is generally called simply the standard error of the mean, but keep in mind
that S« functions as a statistic whose job is to estimate o% (and, by extension, o).
The standard error tells us that any difference between the population mean and
the sample mean drawn from the population is an “error” which has been
spawned by the vicissitudes of sampling. Were there no errors, then all the X
would be identical, regardless of how many samples had been drawn. In this
case, the standard error would drop to zero. But a standard error of zero is
impossible for any real run of data because of the omnipresent errors of
sampling.

Sy, therefore, estimates ox when o is unknown. We know that the quantity
z = (X — u)/ox is a random variable with a mean of zero and a variance of 1. If
the X, are normally distributed, these quantities are exact; otherwise, the resuit
is only approximate. Table A.3 (Appendix) provides the probabilities associated
with various areas contained under this z-distribution. What effect does the
substitution of Sx for ox have upon the distribution of z?

In the early days of statistical theory, the estimated standard error of the
mean, Sx, was simply substituted forthwith into the formula for z, as though no
estimation was involved at all. But we now know that substituting Sz for ox
produces a different, rather distinctive, mathematical entity called t:

Sk

(10.1)

t = =m (10.2)
Sx

Despite the superficial similarity of z and t, a couple of critical differences

distinguish the behavior of each.

The numerator of the familiar z-score depends upon two quantities: The
sample mean and the population mean. Sample means are always random
variables, but the population mean is a parameter and hence is constant for a
given population, Thus, for a particular population, the numerator of z depends
strictly upon X, and u is constant. The denominator of z is also invariant
because ox is constant for a sample size n. The specific value of any z depends
strictly upon the value of the sample mean.

The distribution of the t-ratio is more complex. As with z, the numerator of t is
a random variable, dependent upon X. But unlike z, the denominator of t is not
constant; Sz is a statistic varying from sample to sample. The value of any
particular t depends upon both the sample mean and the sample variance. The

t-ratio has become a function of sample size, since Sx = $/V/n, and herein lies
the salient difference between z and t. If the same population were repeatedly
sampled, a given value of X; would always produce exactly the same value of z.
But any given value of X; can produce widely different values of t because Sy is
computed from the specific sample at hand.

The t-ratio is thus more variable than z, and the extreme variates create longer
tails for a t-distribution than for a normal distribution. The probability distribu-
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Fig. 10.1 Comparison of two t-distributions with the normal curve (after Alder and
Roessler 1972: 156).

tion function of t becomes flatter than the normal curve, especially when small
values of n are involved (see Fig. 10.1); the smaller the sample size, the “flatter”
becomes the t-distribution relative to the normal curve. Conversely, as n
increases, the distribution of t tends toward normality. In fact, for samples of
size n = 30 and larger, the normal distribution and the t-distribution are virtually
identical.

The problem of defining a probability distribution for t when o is unknown
remained a puzzle throughout the nineteenth century, despite other notable
advances in statistical theory. The precise mathematical distribution of t was
finally established by William S. Gosset, a statistician employed by the Guinness
brewery in Dublin. The Guinness people had a strict rule prohibiting their
employees from publishing their discoveries, but due to the importance of
Gosset’s computation, the company granted him the “privilege™ of publishing
his findings, provided he remain anonymous.

Gosset published his classic paper “The probable error of the mean™ in 1908
under the pseudonym of "'Student,” and many feel that this single article laid the
foundation for modern statistical theory. Curiously, the name “Student” has
remained permanently affixed to the t-distribution even though Gosset’s real
name was publicly released shortly thereafter. Gosset's mathematical findings
are beyond the present scope,’ but his derivation of the equation for t allowed
others to tabulate the various probabilities contained under the probability
distribution of t (see Table A.4). The t-tables are quite simple to operate and
allow ready computation for practical research problems when o is unknown.

Assigning a probability figure to t requires only two simple quantities: the
level of significance and the sample size. Probability values ranging from
@ = 0.450 to @ = 0.005 are listed across the top ot Table A.4. This table has been
constructed for testing two-tailed hypotheses, so each probability includes the
area under both tails of the t-distribution. The appropriate significance level for

"The equation for the Student's t-distribution is given by Mood and Grayhill (1963 237 and
discussed in detail by Hays (1973: 392-399).
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a one-lailed case is found by consulting the figure listed under p =2a. If a
one-tailed hypothesis were to be tested at the 0.01 level, the appropriate column
of Table A4 is p =2« = 2(0.01) = 0.02.

The sample size is also necessary to enter Table A.4, but note that the rows are
labelled "‘df" rather than the familiar n. The abbreviation df stands for degrees
of freedom, a most important statistical concept. For now, we must settle for a
relatively general explanation of this concept. The number of degrees of
freedom in a sample is the number of freely varying quantities. Suppose you
wished to find four integers which sum to 20:

at+b+c+d=20

You could assign any possible value for any three digits; say, a, b, and c¢. But
because the sum must equal 20, the last digit to be selected (d in this case) is
nat free to vary. The value of the final digit is “'fixed,”” predetermined, because
there is only a single value which will still produce a sum of 20. Suppose you
selected the following integers:

a=42 b =26 c=—-96

The d can take only one possible value: d = — 48. The total number of integers
involved in this example is n=4. But the fotal number of independent choices
is only (n —1) = 3. The number of independent choices is termed the number of
degrees of freedom. We have lost one degree of freedom by imposing the
condition that the numbers must sum to 20. The number of degrees of freedom
are given by n minus the number of conditions imposed upon the variates.

Although you may not have realized it, a condition has been imposed on the
sample being tested against the t-distribution: The sample variates must have a
mean of X. Every sample has exactly n variates, but only (n — 1) of these variates
are free to vary independently of one another. The last value is predetermined by
the equation X = 2 X, /n. Hence, for the t-distribution, the number of degrees of
freedom is always (n —1).

10.3 COMPARING A SAMPLE TO A POPULATION
WHEN o IS UNKNOWN

We now possess a distribution which facilitates hypothesis testing, regardless
of whether or not ¢ is unknown. We can now approach realistic data without
making unrealistic assumptions. The t-test is not without assumptions, of
course, and these are discussed in Section 10.9.

One common application of the t-distribution often involves comparing a
sample mean with some parametric mean. For two-tailed testing, the statistical
hypotheses are

Ho: p=A H: pu#A

whare A Is some hypothetical value. The directional versions of these hypoth-
@508 are

Ho: p=A (forp=A)
H: p<A {orp =>A)
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The constant A is zero in many cases, but A is free to assume any a priori value.
The equation for t has already been introduced as Formula (10.2)

t=%X"F _withdf=(n-1)
Sx

where Sz = S/V/n. A couple of simple examples should suffice to illustrate this
application of the t-distribution.

Example 10.1

Consider the following generalization: Hunter-gatherers tend to have an
average population density of about 10 square miles per person. Test this
hypothesis upon the following data taken from Steward (1938: 48-4S) for
the Northern Paiute of the western United States.

Owens Valley 2.1 square miles per person
Deep Springs 10.7
Fish Lake Valley 9.9
Saline Valley 16.6
Death Valley 30.0

Let u be the population mean for the continuous random variable
“population density.”’ The statistical hypotheses are

H.: w =10 square miles per person
H: p# 10 square miles per person

Because o, the standard deviation of the random variable X, is unknown,
the t-test must be used instead of the familiar model of the normal
distribution. This is a two-tailed test, with @ = 0.05. Withdf =5—1 =4, the
boundary of the critical region for t is tyos = 2.776. The critical region itself
is actually a set of t-values such that |t| >2.776.

The sample size is n =5 and the descriptive statistics are

i
X = 6%‘?’ = 13.86 square miles per person i i

g \f4314‘97 ~\/107.99

The standard error of the mean is estimated by

4 . \V107.97 .
k Sx =———=—=4.65 square miles per person
V5
The t-ratio in this case is
~13.86-10.0 _
t= 2.65 =0.83
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Since this computed t-statistic does not fall within the critical region, H.
is not rejected. We conclude that the Northern Paiute data are consistent
with the generalization that hunter-gatherers have an average population
density of 10 square miles per person.

Suppose that one erroneously applied the normal distribution model
instead. The sample standard deviation must be taken to estimate o,
despite the small sample size of n =5:

_X-—p_1386-10.0
o% 10.39/ V5

We find the associated probability to be p = 0.4066. Since we know that
the true probability (f = 0.83) is about 0.44, the incorrect application of the
normal distribution model would cause us to underestimate the true
probability.

=0.83

z

Example 10.2

Clovis projectile points tend, on the average, to be about 7.5cm long
(Wormington 1957: 263). The Lehner Ranch site in southern Arizona
yielded 13 projectile points associated with the butchered remains of
mammoth, horse, bison, and tapir. The excavators (Haury, Sayles, and
Wasley 1959: table 1) list the following length measurements for these
artifacts (numbers in parentheses are estimates):

Point Length, cm Point Length, cm

1 (8.7) 8 4.7
2 79 9 56
3 8.3 10 3.1
4 7.4 11 7.8
6 (3.6) 12 9.7
6 6.2 13 5.2
7 8.1

Since the average length of these 13 points is less than 6.7 cm, are these
points significantly shorter than most Clovis points (at the 0.05 level)?

Let u be the population mean of the random variable “total length.” o is
unknown.

Statistical hypotheses:
Ho: p=7.5cm
Hi: p<7.5cm

Critical region: With df =(13—-1)=12 and a one-tailed test:
toe = toto= 1.782
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Sample statistics:

X= *:I? =6.64cm
S=2.06cm
2.06
Sz=——==057cm
Vi3
t-ratio:
6.64—-7.5
t 057 1.51

Statistical decision: Since the computed value does not fall within the
region of rejection, H, is not rejected.

Research decision: The sample of 13 projectile points from the Lehner
Ranch are not significantly shorter than typical Clovis points.

As an aside, let us examine the computation of the sample standard
deviation. The above value of S was computed by Formula (4.13):

§ = [EX —X)_ [50.88 _
N"r=i 12— 206cm

But suppose that the formula with divisor of n had erroneously been

applied. Then
&= JEX - Xy _ [50.88 _
n 13 1.98cm

This value of S can readily be corrected by using the correction factor
presented earlier:
S= \/ i 4
=1

AL =
=\V12 (1.98) =2.06 cm

This correction is often necessary when dealing with standard deviations
computed on a computer.

10.4 CONFIDENCE INTERVALS FOR p WHEN
o IS UNKNOWN

The earlier discussion of confidence intervals for the population mean (Section
A 5) assumed that o was known. Substituting Sx for o« vitiates use of the normal
distribution, upon which Expression (8.6) was based.

The t-distribution allows us to derive a new expression which is applicable
oven though o is unknown. Solving Expression (10.2) for u, we find the
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confidence limits for u when o is unknown to be
=X =18z (10.3)

The t-distribution is symmetrical, so the confidence limits fall equidistant from
X. Confidence intervais are computed in a manner identical to those of the
normal distribution except that the tabled value of t is substituted for z and S» is
involved rather than ox

Example 10.3

Find the 99 percent confidence limits for the 13 Clovis points from the
Lehner Ranch site (Example 10.2).

The appropriate value of t with 12 degrees of freedom is to0 = 3.055.
Substituting into Expression (10.3):

. L 2.06
Confidence limits = 6.64 = 3.055 (—-—) cm
V13

=6.64+=1.74cm

We conclude with 99 percent confidence that the true parametric length of
these Clovis points lies between 4.90 and 8.38 cm.

Example 10.4

Five skulls were excavated from a large Pleistocene cave in mainiand
China:

) Skull Cranial Capacity, cc

1225
1135
1055
1225
1030

LS A I S I

. Find the 95 percent confidence interval for this population.

We compufe X = 1134.0 cc with S = 91.68 cc. The appropriate value of t
; with four degrees of freedom is found from Table A.4 to be t.os = 2.776.
| Substituting into Equation (10.3):

Confidence limits = 1134.0 = 2.776 (M) cc

V5
= 1134.0 £ 113.63cc

We can conclude that the probability is 0.95 that the true population mean
lies between 1020.4 and 1247.7 cc.
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10.5 COMPARING TWO SAMPLE MEANS WHEN o
IS UNKNOWN

Section 10.3 presented a method for evaluating statistical hypotheses about the
mean of a single population. Some value for u (which we called A) was
compared to the sample value. But sometimes it is impossible to frame a
hypothesis specific enough to predict exact values for p. Anthropologists are
often interested in comparisons which evaluate differences between two
sample means without reference to specific values for u. Not only are compara-
tive studies important in themselves in anthropology, but relational hypotheses
(as opposed to absolute hypotheses) also sidestep the task of predicting exact
values for u. It is almost impossible, for example, to predict an absolute value for
the cranial capacity of a sample of Australopithecus skulis. But it is a relatively
sasy matter to predict that Australopithecus skulls should have a smalier cranial
capacity than a sample of Neanderthal skulls. Similarly, we can guess that
hunters such as the Eskimo will have a higher per capita protein intake than a
largely plant-gathering group such as the Western Shoshoni, even though the
precise value of the protein intake for either group is unknown.

Only rarely will a sample mean ever exactly equal the population mean. This is
because of sampling error. Similarly, two populations with identical means
(g = w2) will almost always yield samples with different means (X, # Xz), once
again because of sampling error. So the question must arise when comparing
two sample means as to whether the difference is due to a real difference
between the populations or whether the disparity between the samples should
be attributed to chance alone. '

Consider the archaeologist attempting to infer prehistoric population
dynamics from a settlement pattern survey. He might suspect that one plant
community supported a denser population than did the adjacent biotic com-
munity, even though he cannot accurately predict the population densities of
two areas. Valley floor biota might, for instance, be expected to support a
greater population density than the neighboring hilly mountain flanks. Accept-
ing the “number of rooms per building” in an archaeological site as an
operational indicator of population density, the hypotheses would appear

H,: Py =y Hi: x D> Ly

We are predicting an ordinal relationship ('greater than') rather than a metric
hypothesis ("how much greater than). Suppose that a sample of nine contem-
porary sites were excavated to test this proposition:

Valley Floor, Site No. of Rooms
1 9
2 10
3 z
4 10

X =9.0 rooms per site; S, =1.41 rooms
per site

A ——,

e

e e

R V—
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Mountain Flanks, Site No. of Rooms

[ N R
[ I 1 o))

Y =5.4 rooms per site; S, = 1.14 rooms
per site.

The descriptive statistics tell us that the valley floor sites tend to have more
rooms than sites on the mountain flanks (X =9.0> Y =5.4). The research
hypothesis would appear to be correct (at least the direction is right). But the
size difference is not overwhelming and might well be due to mere sampling
error rather than a true difference in site size.

That is, we must consider the standard error of this difference because the
larger the standard error, the less chance there is of a true population
difference. But if the standard error is relatively small, the population of valley
floor sites probably has more rooms than the mountain sites, as suggested in
the research hypothesis.

This situation is analogous to that encountered in Chapter 8, when two
samples were compared. If the population variances were known, then Expres-
sion (8.5) could have been used to determine the standardized normal deviate.
But as in so many problems of this sort, we must deal with the results at hand.

The first difficulty is to estimate these unknown population variances. We
must assume that the two populations have identical variances. By so doing, we
can argue that any discrepancy between the samples relates only to differences
in central tendency rather than differences in shape of the distribution of
variates about the mean.

All statistical estimates improve as n increases, so the best possibie estimate
of either population variance will include the relevant variates. There are two
distinct samples involved here, but because we assume the population variances
t0 be equal, we can combine the deviations about the respective sample standard
deviation. The individual variances are pooled into one single, best estimate of
population variance:

g =3 ER R 0T

10.4
n.+n,~2 ( )

This new expression is called the pooled estimate of the standard deviation. S,
combines the total amount of deviation about X in the first sample with the
amount of deviation about Y in the second sample and then averages this by
dividing by the combined number of degrees of freedom. Two degrees of
freedom are lost because two independent means were computed. S, is an
unbiased estimator of o only as long as the individual population variances are
assumed to be equal.

Let us see how the pooled estimate of ¢ works on the archaeological data at
hand. Each sample has a known standard deviation: Sx estimates the variability

\ad
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in the number of rooms per site on the valley floor (ox) and Sy estimates the
variability in the mountain sites (ov). By assuming that ox = ov, Sx and Sy are
combined (pooled) into a single estimator, S..

6.00+5.20 a5
\/4+5 2 60=1.26

Thus, S, estimates that the population standard deviation of rooms per site on
the valley floor—and by assumption, also on the mountain slopes—is ox = ov =
1.26 rooms per site.

With this new estimate of total variability firmly in hand, it becomes possible to
define an appropriate expression of the t-ratio to test for a difference between
two samples:

X=Y) ey (10.5)

where df = ny + ny — 2. In this expression,

Mgy = Hx — Uy

and

Ry

Sy =
X-Y Nx ny

Note that S,°/ny corresponds to Sy°. The general configuration of the t-ratio
remains as before. A parametric mean (in this case px-v) is subtracted from the
sample estimate of this mean, X — ¥, and is then divided by an estimate of the
standard error of the difference between the sample means (Sx_¢).

We can now statistically assess the difference between two small sample
means. Sz v is found in the archaeological example to be

Sy 1f° \/0.40; s;=\/1%°=

Ss-v=V0.40+0.32 = V0.72 = 0.85 room per site

Note there is no need to take the square root when computing Sx and Sy. The
radicals will automatically cancel when S, and Sy are substituted info Sx.».
The value of t in the example is
360
t = 085 4.24
with df = 4+ 5 — 2 =7. This observed 1 is highly signficant since #, o, =2.998 with
7 degrees of freedom. Hence, the archaeological samples allow rejection of H,,
and we may justifiably conclude that valley sites tend to have more rooms than
do the mountain sites. (Whether the index of "'rooms per archaeological site” is
s relevant indicator of prehistoric population density, of course, remains an
archaeological rather than a statistical matter.)
An understandable degree of confusion can arise from the several variance
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estimates involved in comparing two samples. Te summarize:

Sx=standard deviation of sample X (estimates ox).
Sy = standard deviation of sample Y (estimates o).

Se = pooled standard deviation of both sample X and Y (best estimate of

both ox and ov, which are assumed to be equal).
Si = 8,/V nx is the standard error of sample X.
Sy = §,/Vn, is the standard error of sample Y.

Szv = standard error of the difference between the two sample means

(estimates ow-v).

Example 10.5

A paradox in the evolution of culture is how consistently man’s technolog-
ical advances seem to backfire; Marvin Harris (1971: 216) has called such
advances the '‘'labor-saving devices that increase work."” It can be said, for
example, that advanced agricultural techniques have increased (rather
than decreased) the per capita amount of work required for survival. To
test this hypothesis, fieldwork was carried out among the Bushmen (a
hunter-gatherer people) and a group of West African subsistence farmers.
This sample of 26 Bushmen indicated that each works an average of 805
hours per year, with S = 10.3. The 16 West Africans in the sample spent an
average of 820 hours per year, with S =12.9 hours. Do these results
support the hypothesis that hunter-gatherer groups tend to work less than
agriculturalists (at the 0.01 level)?

Let us term the Bushmen as group X and the farmers as group Y.
Statistical hypotheses:
Ho:  px = py Hio opx < py

Region of rejection: For a one-tailed test with (26 + 16 — 2) = 40 degrees
of freedom, too. = 2.423.

We know the two sample standard deviations, Sx = 10.3 and Sy = 12.9,
so it is necessary to work back to find the sum of the squared deviations:

(X — Xy
n-—1
2(X, — X)*= 8&(nx — 1) = (10.3)°(25) = 2652.25
Y, — Y =84(n —1) = (12.9)%15) = 2496.15
The pooled estimate of the standard deviation is

s, = \/2652.25+2496.15 —11.35
40
The standard error of the difference is

Sy =

S0 112871  128.71 _ /2961 8.04

26 16




The Student’s t-Distribution 239

=Vv12.99 = 3.60

The t-ratio is found to be
t _(805-820)-0 _
3.60
Since |t| = 4.17>140. = 2.423, the results are judged to be statistically
significant and H, is rejected. These two samples lead us to conclude that
Bushmen seem to work significantly less than West African agricultural-

ists. Further generalization—to all hunter-gatherers and agricultural-
ists—becomes an anthropological rather than a statistical matter.

-4.17

Example 10.6

In Example 10.1, a sample of five Northern Paiute bands were found to
have an average population density of X = 13.86 square miles per person,
with Sx = 10.39. The following sample of 11 Western Shoshoni bands (the
Northern Paiute and Western Shoshoni are neighbors in the Great Basin)
shows an average population density of Y = 7.91 square miles per person.
Can the Western Shoshoni be said to have a higher population density
than the Northern Paiute at the 0.05 level (data from Steward 1938:
48-49)7

Band Population Density, square miles per person
Reese River 3.6
Railroad Valley 9.0
Antelope Valley 11.0
Gosiute 12.5
Diamond Valley 3.8
Ruby Valley 2.8
Palisade 3.3
Halleck 4.0
Battle Mountain 25
Kawich 17.0
Little Smoky Valley 17.5

Statistical hypotheses:
Ho:  px =y Hit px = py

Region of rejection: For a one-tailed test with (5+11—2) = 14 degrees
of freedom, toio=1.761.

To find Sz-v, we must first find S,, the pooled estimate:

_ /431.8-334.1 _ o
S =V s+1i-2 - VoI

Sep= 24T | BAT1 _ rEsi 309

R 44
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Note that the sample standard deviation per se (Sx and Sy) is not needed
in finding Sx-v, since Z(X; ~ X)* and Z(Y; — ¥)’ are the appropriate terms for
finding S,, which in turn is substituted into Sx_v.

The t-ratio is found to be

_(13.86-7.91) _
t 5 1.49

The computed value of t far exceeds the critical region, so H, is not rejected.
On the basis of the two samples at hand, Western Shoshoni can not be said
to have a higher population density than Northern Paiute. Another way of
stating this conclusion is that Northern Paiute and Western Shoshoni
samples appear to have been selected from the same statistical population.

10.6 COMPARING A SINGLE VARIATE TO A SAMPLE

The following formula can be used to determine the probability that a single
isolated variate belongs to the same population as a given sample:

t:(X—XQ\/Sn/(n+1) (10.6)
X

where Sy is the standard deviation of the sample. The number of degrees of
freedom are equal to df = (n — 1). This formula is derived from a simplification of
Expression (10.5) which compared the means of two independent samples: One
“sample’’ in this case consists of a single variate. Note that had two “samples,”
each containing only a single variate, been compared, then df=n.+n,—2=0.
Two isolated variates cannot be compared.

Example 10.7

Paleoanthropologist Bryan Patterson found a fragment of human mandi-
ble at Kangatotha, west of Lake Rudolf, Kenya. A radiocarbon analysis
determined a probable age of 2835 8.Cc. = 100. The crown area of M, on the
Kangatotha mandible is 139.2 mm® {data from Coon 1971b: table 2). By
contrast, Shaw measured a series of 73 South African Bantu informants
and found the crown area of M, to be only 1155 mm® (assume S =
11.0 mm). Is the Kangatotha molar too large to be Bantu at the 0.01 level of
significance?

Statistical hypotheses:

H,: p=1155mm Hi: p>115.5mm
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Region of refection: For a one-tailed test with @ = 0.01, anddf =73 -1 =
72, tosa = 2.390. (The tabled value for 60 df is sufficient in this case.)

The t-ratio is computed to be

; (1155 139.2)V73/74 _
- 11.0 B

This value of t is less than the critical value, so H, is not rejected. Thus, the
crown area of the Kangatotha molar is not significantly different from the
Bantu sample. They could represent the same statistical population. You
should note, however, that this conclusion does not have taxonomic
implications.

-2.14

10.7 SPECIAL CASE: STATISTICAL INFERENCE
IN RADIOCARBON DATING

Radiocarbon dates are the final product of a fascinating collaboration between
nuclear physicists, statisticians, and archaeologists. Radioactive decay is a
random process. Beta emissions are produced as C" atoms decay to N“
(nitrogen), and these emissions can be detected by sensitive Geiger counters.
The underlying principle of this complex technique is simple—the fewer
emissions, the older the carbon. Although the average number of emissions can
be predicted over a given span of time, nobody can ever predict precisely which
atoms will decay at any particular time. The radiocarbon laboratory employs
Geiger counters to measure the number of beta particles emitted over a
1000-minute interval. Because radioactive decay is a random process, the
sample variability must be taken into account, and samples are always counted
lwice. If the counts from the two runs are in “statistical agreement,” further
counting is unnecessary.

The ‘‘radiocarbon date"” itself consists of two parts, a mean and a standard
deviation: X =S. For example, an archaeologist might receive the following
radiocarbon determination from the laboratory:

950 =40 radiocarbon years B.P. (before present)

In this case, X = 950, which estimates the true age of the sample (1 ). The degree
of variability between counting runs is expressed by S, the sample standard
deviation. The population standard deviation is unknown and estimated by S.
The larger the S, the more variability was observed between counting runs, and
the less reliable is X in estimating w. From what we already know about the
nature of the normal curve, this means that there is a 68.26 percent chance that
the true age falls within the range of X =8, that is, between 910 and 990
radiocarbon years ago. The average age of any sample is only an estimate of the
irue age, so the plus-minus factor should never be omitted from radiocarbon
determinations.

An example should clarify these elementary statistical aspects of radiocarbon
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dating. During the 600-year Classic period, the Maya erected carved stone
monuments (stelae) bearing "Long Count’ dates. The dates seem often 1o
denote the date of dedication of a temple or other ceremonial structure
although the exact meaning of the inscriptions is still unknown. Mayan epi
graphers have struggled for decades trying to correlate the Mayan Long Coun!
system with the Christian calendar.’ The search was finally narrowed to a series
of discrete choices.

Any given katun (Maya period of 20 years, each consisting of 366 days) can
recur in the Maya system only once every 260 years. As a result, scholars have
correlated given Maya dates to several intervals along the Christian calendar
depending upon the zero point chosen for the Maya system. The Maya date
9.15.10.0.0 3 Ahau 8 Mol, for example, dedicated Temple IV at the Classic Maya
site of Tikal, Guatemala. George Spinden correlated this date to August 29, A.D
481. A second reckoning, the Goodman-Thompson-Martinez correlation, sets
this same Maya dedicatory date exactly 13 katuns (260 years) later, at June 28,
A.D. 741. A solid case was made for both correlations, based upon historic
records of the Maya calendar, and a stalemate resulted. Fortunately, some of the
inscriptions at Temple IV were upon wooden lintels, so the radiocarbon
laboratory at the University of Pennsylvania ran a series of tests upon the lintel
itself in an effort to resolve the correlation problem. The hope was that the C"
dates would correspond to one of the two likely correlations, setting the dispute
to rest.

Although dozens of radiocarbon determinations were processed on the Tikal
beams, consider for the moment the implications of a single date (from
Satterthwaite and Ralph 1960: table 1).

Laboratory Beam Age, years Age, years
Number Number B.P. A.D.
P-236 Room 2, 1262 =38 697 =38
VB2

Each “'radiocarbon date’ is assigned a laboratory number. If subsequent runs
were made on the same sample, a new number would be assigned to keep the
independent determinations separate. Date P-236 (the 236th determination run
by the Pennsylvania Laboratory) has an average age of X =697 radiocarbon
years,” with a sample standard deviation of S = 38 years. Remembering that X is
only an estimate of the true age of the Tikal lintel, the standard deviation can be
used to compute the same limits of confidence for the true age (). There is, for
example, a 0.6826 probability that the true age lies between A.D. 659 and A.D. 735
(see Fig. 10.2). There is also a probability of 95 percent that the true age falls
between A.D. 622 and A.D. 771 (X £1.96S). While these reliability estimates
place the true age of the sample within a known error factor, the data do not
directly tell us about the correlation problem.

By inspection, we can see that the sample mean of P-236 is 44 years younger

2See the discussion earlier in Section 2.4.3 for a consideration of this problem in terms of levels of
measurement.
*By convention, all C'* dates are computed as years before 1950.
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A, =6826

Az = 0.9500

S = 38 radiocarbon years

-1968 -18 X 18 1,985
AD. 622 659 697 735 771
Fig. 10.2

than the Goodman-Thompson-Martinez correlation, but is 216 years too old for
the date predicted from the Spinden correlation? Can we therefore say that date
P-236 supports the Goodman-Thompson-Martinez correlation? Is the date
close enough, or is the 54-year discrepancy too large a difference? Could the
error of dating be so great as to support both correlations? Or does P-236
suggest that both correlations are wrong? Because radiocarbon dating is a
random process, and because of the error introduced in the counting process
itself, all radiocarbon dates involve such variability. The solution to the correla-
tion problem will not be absolutely clear-cut. The answer must be expressed in
terms of probability.

Figure 10.3 includes both correlation dates for the Maya calendar. We are now
dealing with sample statistics (rather than population parameters), so the
expressions on the normal curve are denoted by X rather than w, as before. The
point X, is A.D. 741, the date predicted by the Goodman-Thompson-Martinez
correlation. The probability that the true age of sample P-236 is A.D. 741 or older

corresponds to _
_Xi—=X_741-697 _

&= .
1 5 38 1.16
pXx=741)>0.12
S - 38 radiocarbon years
A,
Az

X X Xy
481 697 741

Fig. 10.3
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The probability that sample P-236 dates the event to A.D. 481 or younger is

X:— X _481-697 _
S 38

p(X = 481) <0.0001

—5.68

Z3 =

These results tell us that while the probability that P-236 actually dates the
Spinden correlation is virtually nil, the chances of this single sample corres
ponding to the Goodman-Thompson-Martinez correlation are more than 12
percent. Taking only the results from P-236, the Spinden correlation seems to be
eliminated. There remains a good chance that the Goodman-Thompson-
Martinez correlation is correct.

But because of the randomness and uncertainty involved in C' dating.
archaeologists have learned never to trust a single radiocarbon determination
The large series of dates run for the Tikal lintels, for example, eventually
confirmed the Goodman-Thompson-Martinez correlation by an overwhelming
margin. The methods for comparing C' dates to see whether they date a single
episode will be considered later in this chapter.

® What we seek in any realm of human thought is not absolute
certainty, for that is denied us as men, but rather the more
modest path of those who find dependable ways of discerning
different degrees of probability.—E. Trueblood

10.7.1 Computing the Radiocarbon Estimates

The radiocarbon age estimate—really a sample mean—is merely the adjusted
mean of Geiger counts on ancient charcoal-bearing samples. But the statistical
deviation is a more complex statistic, reflecting three major sources of variabil-
ity: variation in

1. The ancient sample

2. Environmental radiation striking the Geiger counter

3. The known-age calibration sample.

Let us examine how these independent sources of variation are integrated
into a single estimate of standard deviation. This discussion not only provides
added insight into the workings of the radiocarbon method, but also furnishes
an excellent opportunity to review the mechanics of computing (and combining)
standard errors.

We begin from scratch by following an actual sample through the various
manipulations involved in the radiocarbon process. The followind data were
obtained from vault beam 2, room 3 in Temple IV at Tikal (Satterthwaite and
Ralph 1960: table 1):

(P-243) 1223 +46 radiocarbon years B.P. (before 1950)

P-243 can also be expressed as A.D. 727 =46 radiocarbon years. But this final
age estimate results only after a series of laboratory and statistical manipula-
tions.
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Once the beam was removed from the temple, a small sample of zapote wood
was cleaned manually to remove termite remains and then soaked in hydro-
chloric acid to dissolve inorganic carbon compounds. The sample was then
placed in a combustion tube with pure oxygen gas and the mixture was ignited
to convert the ancient solid carbon into carbon dioxide gas. This gas was
filtered to remove contaminants, and then piped into a Geiger counter. We know
that a beta particle is emitted each time a C' atom decays back into N". The
actual radiocarbon analysis counts the number of beta emissions—and by
extension, the number of C'* decays—with a Geiger counter. The length of the
counting interval depends both upon the material being dated and also the age
of the sample; most laboratories count their samples overnight for a standard
interval of 1000 minutes, and every sample is counted at least twice.

The laboratory worksheet for the Tikal date P-243 appears as follows:

Total
Date Count,
Counted X,
3/15/59 37,069
3/16/59 36,918

The total count, X,, is the exact number of beta emissions recorded in a single
1000-minute counting run. P-243 was counted on both 15 and 16 March. As long
as these two net counts are found to be in statistical agreement—by a
chi-square test (discussed in Chapter 11)—no further counting runs are neces-
sary. The average of the two total counts is

- _ 37,069+ 36,918
X=—g

= 36,993 counts
But the University of Pennsylvania radiocarbon laboratory, like every other place
on this planet, is subject to atmospheric radioactivity which registers on
laboratory Geiger counters along with the ancient sample emissions. The
amount of this background radiation, called b, must be determined for each
radiocarbon laboratory and then periodically rechecked for fluctuation. During
March 1959, the University of Pennsylvania radiocarbon laboratory was bom-
barded by an average of b =9416 radioactive_emissions per 1000-minute
counting interval. The net number of emissions, X,, from sample P-243 is thus
found by subtracting b from each of the total counts. The average net count for
both counting runs is
T - (37,069 — 9416) + (36,918 — 9416)
4 2
= @-5—3—222450—2) = 27,578 counts

S0 the average net count, X., is actually a sample mean. More precisely, X, is
the mean number of beta emissions per 1000-minute counting interval. The
standard error (the standard deviation of the mean) is given by

V(X +b)n
n

Sy =

N e e, o
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where n is the number of counting runs.” This rather unusual expression is
different from the previous standard errors we have encountered because
radiocarbon emissions follow the Poisson distribution, a variant of the binomial
distribution.

The standard error of the net counting rate for sample P-243 is

/(36,993 + 9416)2
2

Sk = =152.3 counts per 1000 minutes
The net rate per minute, called I, is then found by dividing by the standard
counting interval, 1000 minutes:

27,578 _ :
| = 3000 - 27.578 counts per minute

with a standard error of

Sz

S = 1000 minates

=0.152 counts per minute

The net counting rate is then converted to an age estimate by comparing the
amount of decay in the ancient sample relative to a modern sample. To find this
relative amount of decay, it is necessary to know the existing radioactivity of
modern samples. The University of Pennsylvania laboratory measured the beta
emissions in a number of recent oak tree samples and found the average
zero-age counting rate, Iy, to be

I, =32.146 £ 0.040 counts per minute

The standard error of the difference between the average zero-age rate of
emission (/,) and the emission rate of the ancient Tikal sample (/) is found, as
before, as the square root of the sum of the squared individual standard errors:

S =V (0.152)= +(0.040 ? = 0.157 counts per minute

The value of S; thus reflects the total combined variability due to fluctuations in
(1) the ancient sample, (2) the background, and (3) the zero-age sample. The
results of the radiocarbon analysis are hence summarized as

X, =8, counts per minute

Translating the figures from “counts per minute’ to ‘‘radiocarbon years ago” is
accomplished by substitution into the routine formula for age computation
(based upon a half-life of 5568 years):

absolute time = log (/o/1) % 18.5 x 10°

S is added to and subtracted from X, to compute the range of one standard
error from the mean. These "minimum” and ‘“‘maximum’ ages (+1 standard
error) are substituted into the conversion formula:

“The symbolism employed here departs somewhat from that generally used by radiocarbon
laboratories (for exampte, Ralph 1971), to remain consistent with the present discussion.
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Maximum age:
X, — 8 = 27.578 - 0.157
= 27.421 counts per minute
Maximum time:

' (27.421
9\32.146

)x18.5>< 10° = log (0.85301) X 18.5 X 10°
= - 1277 radiocarbon years
Minimum age:
X, + S, = 27.578 + 0.157 = 27.735
Minimum time:

27.735
2.146

)x 185 x 10° = -~ 1186 radiocarbon years

The average of the minimum and maximum ages of this sample provides the
best estimate of the true age of the sample: (1277 + 1186)/2 = 1232 radiocarbon
years ago. The standard error (expressed in years ago rather than in counts per
minute) is found as simply half the difference between the "minimum” and
“maximum’ ages: (1277 — 1186)/2 = 46 radiocarbon years ago.

All that remains is to convert the date to "‘years before 1950.”" Since the
counting runs took place in 1959, the date is converted to 1232 —9 = 1223. The
final report from the radiocarbon laboratory is

(P-243) 1223 £ 46 radiocarbon years B.P.

Thus, the plus-minus factor appended to radiocarbon dates is really a standard
error (the standard deviation of the sample mean).

But a couple of critical assumptions are necessary before the procedures of
statistical inference can be applied to radiocarbon dates. We must initially
assume that the large number of counts recorded on each run renders the
distribution of means (or the distribution of the difference between sample
means, if two dates are being compared) practically indistinguishable from that
expected for a normally distributed population (Spaulding 1958). That is, the
t-distribution with an infinitely large number of degrees of freedom is assumed
to hold for radiocarbon determinations. We also assume that the rounding of
published standard errors does not introduce any significant inaccuracy.

In addition, we are using the standard error derived from averaging the
"maximum' and “minimum’ ages when it is actually known that the true
standard error (expressed in years) always has a plus error somewhat greater
than the minus error. But for dates of moderate age, this discrepancy is not
marked. For these reasons, comparing radiocarbon ages using the t-
distribution is only an approximation which becomes less accurate as the age of
the sample increases. When greater accuracy is required, it will be necessary to
work with the actual counting runs rather than with the dates as expressed in
absolute years (see Satterthwaite and Ralph 1960, for a more detailed discussion
of these points).
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10.7.2 Comparing a Radiocarbon Date to a Fixed Age

Let us return to the Maya Long Count problem. The t-distribution is useful in
determining which, if any, of the standard correlations is consistent with the
Tikal radiocarbon dates. Although only two of the correlations were mentioned
earlier, the Temple IV dates at Tikal were actually tested against five differen!
Maya-Christian correlations (Satterthwaite and Ralph 1960: tables 15 and 17).

Estimated Age of

Correlation Temple IV, Tikal
Spinden ' A.D. 481
Dinsmoor A.D. 504
Goodman-Thompson-Martinez A.D. 741
Kreichgauer A.D. 858
Escalona Ramon A.D. 1001

We can see from inspection that P-243 (a.D. 727) is remarkably close to the
Goodman-Thompson—-Martinez (GTM) reckoning, but a test of statistical signifi-
cance will show us just how close the GTM date and P-243 really are.

Statistical hypotnesegsz

H,: p=AD.741 Hi: p#AD.741
Region of rejection : For a two-tailed test at « = 0.05 with df ==, thes = 1.96.
Observed t-ratio:

_X-—p _T727-741 _
T8y 46

t -~0.30

The null hypothesis cannot be rejected in this case because t =0.30 <fop =
1.96. We conclude that Tikal sample P-243 is consistent with the Goodman-
Thompson-Martinez hypothesis.

Note that this conclusion in no way confirms the GTM correlation because
other correlations might also account for a C'* date of A.p. 727 at Tikal. Each of
the other population correlations can be tested against P-243 in precisely the
same manner:

Byt pieAD.481 e | 7—27%@1 ~5.35
Hot w=AD.504  tomsme = 7—277“65—04 ~4.85
Ho: s =AD.858  txoongme = Z?—Ej—aﬁ =-285
H.: wp=A.D. 1001 tescalons Raman = 3—27—;61(:‘& =-5.96

It matters little whether radiocarbon samples are expressed in years A.0., 8.C., Or years ago. Only
the difference between the dates appears in the numerator of the t-ratio.

-
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Every observed t falls well within the critical region and the null hypothesis for
sach of the four correlations must be rejected. We reject the Spinden, Dins-
moor, Kreichgauer, and Escalona Ramon correlations as untenable, in light of
date P-243 from Tikal.?

Note how carefully both the statistical findings and the substantive implica-
tions have been expressed. Scientific theories such as these are never actually
proved correct; practical research is directed only toward proving the compet-
Ing theories wrong. Radiocarbon evidence from Tikal allows rejection of the
four prevalent hypotheses competing with the Goodman-Thompson-Martinez
correlation. But the GTM correlation has by no means been proved correct,
since there could always be additional hypotheses which are likewise consistent
with the C'* evidence. After a thorough and well-designed attempt at refutation
such as this has failed, a theory can only tentatively be presumed to be correct.
It can never be proved so (see Naroll and Cohen 1970: 26).

@ No study, whether a true experiment or not, ever proves a
theory; it merely probes it—R. Winch and D. Campbell

Confidence Limits of a Radiocarbon Date Because there might be other
hypotheses to explain the Tikal dates, a further step can be taken toward a final
solution to the correlation problem by computing the limits within which other
acceptable hypotheses must fall. The 95 percent confidence interval for date
P-243 is

n = X+ toos Sx
W =A.D. 727 = 1.96 (46)
@ =A.D. 727 £ 90.2 radiocarbon years

Thus, at a 0.95 level of probability, any acceptable correlation must place the
dedicatory date of Temple IV at Tikal no earlier than A.D. 637 and no later
than A.D. 817. None of the seriously proposed correlations fall within this
interval, so we are still left with a provisional acceptance of the Goodman-
Thompson-Martinez reckoning. Note that computing the confidence interval is
a superior method (in this case) of decision making.

Comparing Two Radiocarbon Dates Sometimes one needs to apply statisti-
cal logic inference when two radiocarbon dates are compared. Consider the
dating of the Lehner Ranch site in southern Arizona, where Paleo-Indian
artifacts were found in clear-cut association with the remains of nine butchered
mammoths. A firehearth was discovered nearby and charcoal samples were
submitted to the University of Arizona radiocarbon laboratory, with the follow-
ing results:

(A-40a) 10,900 = 450 years ago
(A-40b) 12,000 = 450 years ago

"Of course no right-thinking archaeologist would rely upon a single radiocarbon date for so bold a
meclusion; Satterthwaite and Ralph ran a total of ten C'* dates on beams and lintels from Temple IV
ina.
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The means of these two samples differ by some 1100 years, even though the
charcoal came from a single firehearth. Does this 1100-year gap represent a true
difference or can this discrepancy more readily be accounted for by statistical
error?

Statistical hypotheses :
Ho:  phasoa = faace
Hi: pados # foasos

Region of rejection: For a two-tailed test at « = 0.05, and with infinite degrees
of freedom, toes = 1.96.

The standard error of the difference between sample means is found as
before:

Si v = V8 + S7 = V450" + 450° = 636 years
The t-ratio is

¢ =()?— Y)y— ps-v_ (10,900 — 12,000)-(}=_1 73
Si-v 636 ’
Since t=1.73 <t,0:=1.96, H, is not rejected, and we conclude that the
difference between dates A-40a and A-40b is not significant. The two dates
could well date a contemporary event at the Lehner Ranch site.

What should we conclude when a significant difference emerges, indicating
that two dates are really “different?’ Statistically, this decision tells us that the
two radioactive samples have probably been selected from different statistical
populations, but the archaeological ramifications are more difficult to assess.
Archaeologists generally assume that, all else being equal, a difference in
radiocarbon dates results from a true age difference between the samples. But
this remains only an assumption because several other factors could cause
contemporaneous samples to “date” differently: impure CO;, radon in counter,
electronic circuit breakdowns, Geiger counter failure, cosmic ray showers, even
atmospheric fallout. In the Tikal study alone, Satterthwaite and Ralph rejected
over 40 percent (34 of 83) of their counting runs as spurious. There is also the
danger of contaminating the sample itself by sloppy excavation, by percolating
groundwater, by rodent burrowing, by rootlets, or even by insects.

It is always possible to introduce significant error into the samples and hence
create a spurious radiocarbon date. There are even cases when several dates on
the same log have produced widely different age determinations, although the
samples must be of exactly identical age. There seems to be many a "'slip "twixt
the cup and the lip"' in radiocarbon dating, and statistical inference establishes
whether or not a significant discrepancy exists between dates. Only nonstatisti-
cal considerations can explain that discrepancy.

Problems may also arise when structuring the research hypotheses into
statistical hypotheses. If the Lehner Ranch null hypothesis had been directional
(one-tailed), the region of rejection would have been t;,=1.65, and the
observed difference between the dates would have been declared *'significant.”
The two-tailed alternative was selected in this case because no prior hypotheses
existed to suggest which sample should be older than the other. It simply turned
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out that the determination for A-40b was older than that for A-40a. But had there
been some specific reason to suggest that A-40b would be older before the
actual results were known, then a one-tailed test would have been in order.

@ Ours is the age which is proud of machines that think, and
suspicious of men who try to.—H. Jones

10.8 THE CASE OF PAIRED VARIATES

The data considered thus far were purposely selected so that each variate was
totally uneffected by the other sample variates. The assumption of independent
variates follows from our earlier definition of random sampling. But there are
some hypotheses of interest involving data which are not independent of one
another; the variates are "paired” with each other. Consider the following
hypotheses:

Right-handed individuals tend to have larger right arms than left arms.
First-born individuals are usually stronger than their second-born siblings.
Students are rarely smarter than their professors.

Wives tend to be more motivated than their husbands.

These variates are linked into naturally occurring dyads (right-left, male-female,
older-younger), and such linkage vitiates any usage of the ¢-test discussed so
far.

Pairing of variates has an importance far greater than simple convenience
because pairing is a tactic in the general strategy of efficient research design.
The idea behind a purposeful pairing of variates is to increase the basis of
comparison on a desired effect. Extraneous factors (‘'noise’””) can sometimes
produce a significant difference even when there is no difference resulting from
the phenomenon under study. Conversely, these same extraneous factors can
sometimes mask a true difference, resulting in an incorrect acceptance of the
null hypothesis. Errors of this sort can never be totally eliminated, but cautious
design of experiments can purge a great deal of noise from the data.

A basic rule in designing experiments is to control what can be controlled and
to randomize the uncontrollable. Pairing controls extraneous factors by group-
ing variates which are alike in all respects save the condition under study. In
learning experiments, for instance, subjects are often paired by 1Q scores so
that variable degrees of intelligence will not mask the actual rates of learning or
retension. Pairs are also commonly constructed to control for bias by sex, age,
generation, socioeconomic background, motivation, or achievement. Accultu-
ration studies often involve the natural pairings produced in “before-after”
observations. Such variates are termed self-pairing when a single variable is
measured on two occasions under different conditions.

But the use of paired variates destroys the assumption of statistical indepen-
dence and necessitates an alteration in t-testing methods. The following
example illustrates this simple modification.

A controversial topic in anthropology has been the so-called nature-nurture
problem: To what extent is behavior conditioned by environmental as opposed
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The means of these two samples differ by some 1100 years, even though the
charcoal came from a single firehearth. Does this 1100-year gap represent a true
difference or can this discrepancy more readily be accounted for by statistical
error?

Statistical hypotheses:
Ho:  paaca = fLaaos
Hi: s # poaaos

Region of rejection : For a two-tailed test at o = 0.05, and with infinite degrees
of freedom, toes = 1.96.

The standard error of the difference between sample means is found as
before:

tv = V87 + 8¢ = V450° + 450° = 636 years
The t-ratio is

 _(X=Y¥)—pey_(10,900-12,000)-0 _
636

Since t=1.73<1y0s=1.96, H, is not rejected, and we conclude that the
difference between dates A-40a and A-40b is not significant. The two dates
could well date a contemporary event at the Lehner Ranch site.

What should we conciude when a significant difference emerges, indicating
that two dates are really “different?’’ Statistically, this decision tells us that the
two radioactive samples have probably been selected from different statistical
populations, but the archaeological ramifications are more difficult to assess.
Archaeologists generally assume that, all else being equal, a difference in
radiocarbon dates results from a true age difference between the samples. But
this remains only an assumption because several other factors could cause
contemporaneous samples to “date" differently: impure CO,, radon in counter,
electronic circuit breakdowns, Geiger counter failure, cosmic ray showers, even
atmospheric fallout. In the Tikal study alone, Satterthwaite and Ralph rejected
over 40 percent (34 of 83) of their counting runs as spurious. There is also the
danger of contaminating the sample itself by sloppy excavation, by percolating
groundwater, by rodent burrowing, by rootlets, or even by insects.

It is always possible to introduce significant error into the samples and hence
create a spurious radiocarbon date. There are even cases when several dates on
the same log have produced widely different age determinations, although the
samples must be of exactly identical age. There seems to be many a “'slip "twixt
the cup and the lip"” in radiocarbon dating, and statistical inference establishes
whether or not a significant discrepancy exists between dates. Only nonstatisti-
cal considerations can explain that discrepancy.

Problems may also arise when structuring the research hypotheses into
statistical hypotheses. If the Lehner Ranch null hypothesis had been directional
(one-tailed), the region of rejection would have been t;o= 1.65, and the
observed difference between the dates would have been declared *'significant.”
The two-tailed alternative was selected in this case because no prior hypotheses
existed to suggest which sample should be older than the other. It simply turned

-1.73
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out that the determination for A-40b was older than that for A-40a. But had there
been some specific reason to suggest that A-40b would be older before the
actual results were known, then a one-tailed test would have been in order.

® Ours is the age which is proud of machines that think, and
suspicious of men who try to.—H. Jones

10.8 THE CASE OF PAIRED VARIATES

The data considered thus far were purposely selected so that each variate was
totally uneffected by the other sample variates. The assumption of independent
variates follows from our earlier definition of random sampling. But there are
some hypotheses of interest involving data which are not independent of one
another; the variates are ‘‘paired" with each other. Consider the following
hypotheses:

Right-handed individuals tend to have larger right arms than left arms.
First-born individuals are usually stronger than their second-born siblings.
Students are rarely smarter than their professors.

Wives tend to be more motivated than their husbands.

These variates are linked into naturally occurring dyads (right-left, male-female,
older-younger), and such linkage vitiates any usage of the (-test discussed so
far.

Pairing of variates has an importance far greater than simple convenience
because pairing is a tactic in the general strategy of efficient research design.
The idea behind a purposeful pairing of variates is to increase the basis of
comparison on a desired effect. Extraneous factors (‘'noise’’) can sometimes
produce a significant difference even when there is no difference resulting from
the phenomenon under study. Conversely, these same extraneous factors can
sometimes mask a true difference, resulting in an incorrect acceptance of the
null hypothesis. Errors of this sort can never be totally eliminated, but cautious
design of experiments can purge a great deal of noise from the data.

A basic rule in designing experiments is to control what can be controlled and
to randomize the uncontrollable. Pairing controls extraneous factors by group-
ing variates which are alike in all respects save the condition under study. In
learning experiments, for instance, subjects are often paired by IQ scores so
that variable degrees of intelligence will not mask the actual rates of learning or
retension. Pairs are also commonly constructed to control for bias by sex, age,
generation, socioeconomic background, motivation, or achievement. Accultu-
ration studies often involve the natural pairings produced in “before-after”
observations. Such variates are termed self-pairing when a single variable is
measured on two occasions under different conditions.

But the use of paired variates destroys the assumption of statistical indepen-
dence and necessitates an alteration in t-testing methods. The following
example illustrates this simple modification.

A controversial topic in anthropology has been the so-called nature-nurture
problem: To what extent is behavior conditioned by environmental as opposed
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to genetic factors? Identical (monozygotic) twins are a common tool in this
dialogue, especially when an investigator can study pairs of twins who have
been raised separately, under different environmental conditions. If the perfor-
mance of the twins varies, this difference is probably due to environmental
factors, since the twins have inherited identical genetical material. Below are
the actual performance scores of 11 pairs of identical twins. Each twin was rated
on the quality of his or her educational background, and then each was tested
on the Stanford-Binet IQ test (data from Newman, Freeman, and Holzinger
1937: chapter 10). Does a superior educational background produce a highly
significant difference in 1Q?

Superior Inferior

Pair Education Education
| 97 85
Il 78 66
] 101 99
Y 106 89
Y 93 89
IX 102 96
X 127 122
Xl 116 92
X 109 116
Xvii 115 105
XVII 96 77

By inspection we see that in nearly all cases (10 of 11), the individual from the
superior educational background also exhibits a higher score on the IQ test. But
we also know that such results might occur by chance alone. Let us find just how
likely (or unlikely) these findings really are.

The population standard deviation (o%_¢) is unknown and the sample size is
too small to use the sample standard deviation (Sx.;) to estimate that parame-
ter. Because two distinct samples are involved, one might be tempted to apply
the t-test to compare the two samples (Section 10.5). The hypotheses would be

Hy,: px = py Hi: gy >y

where uy represents the average IQ score of the twin raised in the superior
educational environment.

But such a test would be incorrect because a basic assumption has been
violated. Not only must the population variances be equal and both populations
follow a normal distribution, but the two populations must also be statistically
independent of one another. The standard t-test requires that the selection of
variates in the first sample be logically independent from selection of the
second sample. But since each individual in the first sample has a correspond-
ing individual (its twin) in the second sample, neither samples nor populations
are independent.

We must introduce a new variable in order to test for differences in paired
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data:
D=(X-Y)

The paired scores are subtracted and their difference produces a new variable,
called D (“the pair differences’). In effect, D recasts the pairs into a single
sample. Sample statistics can then be found in the conventional manner, except
that the values of D, are substituted for the X;:

p=2D
n

-

Vn

where n is the number of pairs. To determine the sampling distribution, t is
computed as

P = § (10.7)

where wua is the population value of the mean difference. The number of degrees
of freedom are df =(n —1).
The data in the example are analyzed as follows:

Statistical hypotheses:
Ho: pma=0 Hy: wpi#0

Region of rejection: For a significance level of 0.01 in a two-tailed test with
df =(11-1) =10, too = 3.169,

The t-ratio is most easily found by using the following table.

Superior Inferior
Pair Ed., X Ed., Y D (D-D) (D-DY
| 97 B5 +12 + 2.5 6.25
H 78 66 +12 + 2.5 6.25
1 101 99 + 2 ~ 7.5 56.25
v 106 89 +17 + 7.5 56.25
Vv 93 89 + 4 - 8.5 30.25
1X 102 96 + & - B5 12.25
X 127 122 ol ~ 4.5 20.25
Xl 116 92 +24 +14.5 210.25
X 109 116 -7 -16.5 272.25
XVii 115 105 +10 + 0.5 0.25
XVIN 96 77 +19 + 95 90.25
+104 760.75
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S _ 104 _
D=-7=95

_ |760.75
e 10
_872

Vit
Substituting into Expression (10.7) to find t with 10 degrees of freedom,

,95-0
2.63

=8.72

S =2.63

=3.61

The computed value of t is sufficiently large to fall within the region of rejection
We conclude that a superior educational environment does seem to influence I1Q
scores when hereditary factors are held constant.

Example 10.8

Early twentieth century anthropology attempted to combat the prevalent
racist theories of the time by demonstrating how environmental factors
often overshadow the influence of heredity (that is, race). Franz Boas,
himself a member of an immigrant minority, argued that the better
nutritional and health care available in the United States caused far-
reaching physical effects on the offspring of recent immigrants. Boas
collected an incredible volume of data on physical changes occurring in
immigrants and their children so that he could monitor the relationship
between environmental and hereditary factors. The data in the following
table are stature measurements for American-born and foreign-born
Bohemian males (data from Boas 1912: table 1, appendix). Informants are
paired to eliminate age effects. Do the American-born Bohemians appear
to be larger than their foreign-born counterparts, as Boas suggested?

These data cannot be compared by the simple t-test for the difference
between sample means because the informants have been purposely
paired into age grades. But we can test the hypothesis that the average
difference between the American-born and foreign-born informants is
significantly different from zero. That is

Ho: udEO H1: }Ld>0

American- Foreign- B
Age born Males, cm  born Males, cm D (b-Dy (D-D)

4 99.4 98.0 +1.4 —-0.5 0.25
5 105.7 101.0 +4.7 +2.8 7.84
6 110.7 110.6 +0.1 —-1.8 3.24
7 116.0 111.7 +4.3 +2.4 5.76
8 122.5 118.2 +4.3 +2.4 5.76
9 128.5 1281 +0.4 -1.5 225
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American- Foreign- ~ _
Age born Males, cm born Males, cm D (D-D) (D—-D)?

10 132.7 135.1 —2.4 —-43 18.49
11 137.7 134.7 +3.0 +1.1 1.21
12 1411 140.0 +1.1 -0.8 0.64
13 1479 148.1 -0.2 -24 4.41
14 152.3 150.4 +1.9 0.0 0.0
15 155.5 155.2 +0.3 =18 2.56
16 162.7 160.7 +2.0 +0.1 0.01
17 167.6 165.0 +2.6 +0.7 0.49
18 175.0 167.7 +7.3 +5.4 29.16
19 171.2 167.0 +4.2 +23 5.29
20 168.6 171.0 —2.4 -43 18.49
+32.6 105.85

D =326/17=1.9cm; S, = A/105.85/16 = 2.57; S; =2.57/\V17 = 0.62.

These values are substituted into the t-ratio:

_1.9-0

t="062

=3.06

The critical region in this case is defined for a one-tailed test with
df = (17 —1) =16 and a significance level of 0.01. From Table A.4 we find
tooz = 2.583. The computed t-ratio exceeds this value, so we reject H, and
conclude that the sample of American-born Bohemians are significantly
taller than those of foreign birth. Note again how a careful pairing of the
data permits us to control for age in this experiment.

10.9 ASSUMPTIONS OF THE t-TEST

Once statistical hypotheses are formulated, more than one statistical test
method is often available to test the propositions. Exactly which test is
appropriate depends upon the underlying models and assumptions. There is a
real danger in applying tests to data which violate critical assumptions, since
false assumptions lead to the rejection of H, just as surely as can the legitimate
properties of the data. The null hypothesis of a particular test might be
concerned with comparing two sample means. For instance: Should the
underlying assumptions of the test model not be met, the results can appear
‘significant’’ whether or not there is any true difference between the two means.
As long as there is doubt about the validity of the assumptions, one cannot be
certain that H, has been properly rejected or whether the rejection results from
a spurious assumption.

Four explicit assumptions accompany the application of Student's t-test:
interval scale of measurement, independent errors, normally distributed popula-
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tion, and homogeneity of variance. Let us consider each of the prerequisites n

more detail.

1. The variable is measurable on an interval scale, Level O
really more a procedural matter than an asaump!ion‘ of the t-test: The sampl®
mean and variance appear in the t-ratio, and these statistics can beé computed
only upon interval (or ratio) level variates. Nonparametric alte:rl'lati""es to the
t-test are readily available whenever the level of measurement fails to reach &
interval scale (see Chapter 12). ;

?, The variables must exhibit independent errors (except for PafrEd Vam.“eS)
This second assumption requires that the selection of any single variate In 19
way influences the probability of selection of any other variate from e
population. This requirement rarely poses a problem in disciplines e
psychology, where research usually centers about closely controlled eXPE
ments. The psychologist usually establishes purposeful pairing: control groups.
repetitive testing, or some other technique to maintain the indepen
gf obt.:servaii?n. But too little attention has been paid in anthro

roblems of research design, especial ogists and «
thropologists. Sampling in angthropop:oglyai:;ya E?’st?;g;;‘]eg?; cgomplex Sublect and
will be considered in more detail in Chapter 15. i

3. The sample variates are randomly selected from a normally djsrrrbuFed
population. It was necessary to assume that the basic populatio” distribution
was originally normal in order to find the exact probability distributio
t-ratio. This is due to a theorem of mathematical statistics which states e
gwen random and independent observation, the sample mean and varianes .
independent of one another if and only if the population distribution is normal
(see Mood and Graybill 1963: 228-231). Only for normal distribuﬁons can we be
certain that the random variables necessary for the t-ratio (the sample me
sta:Jndfa:ii de:iTtion) are statistically independent.

nfortunately, we can seldom justify thi ion in pr
Faced with the problem of an;lyzin;tzlbsv?:ﬁ:::pr:?:n'or;al data, oné could
attempt to transform the data into a form which does meet this assumption (by
methods discussed in Chapter 14) or look elsewhere for another statistical tes!
The distribution-free (nonparametric) family of statistics aré paf"ic”'a“y usgiol
in this regard (Chapters 11 and 12). But even nonparametric statistics exact 8
price because we lose some available information in exchangé for freedom e
restrictive assumptions.
_ There is, fortunately, another alternative. Now that the assump
ity has been clearly stated and justified on mathematical grou” s, it be‘comﬂ
my pleasure to inform you that normality can be ignored in most applicatiots i
the t-test. Mechanical sampling experiments by investigators in the early 19308
aqd recent computer simulations have shown that nonnormality Hes: oRlY 3
slight effect on the t-test as long as (1) the sample sizes are fai"ly large and (2)
the test is not directional. The only error introduced into twO'tailed testing 54
slight modification in the true level of probability. If, for example, 0N® opera et

within a tabled significance ility of a nonnormal
level of 0.05, the actual probability g upon the

f measurement 15

actical app!ication.

tion of normal-

population will really lie somewhere between 07 dependin :
ween 0.04 and 0.0/, nal assumption

any significant

qu’:ee of skewness. Thus, the overall effect of ignoring the No7
is that the table value of t will lead us to report slightly to0 ™
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findings (Cochran 1947). With this in mind, one should attempt to use larger
samples when the underlying normality of the variates is in question.

More serious errors result from one-tailed testing because highly skewed
distributions can seriously alter the tabled values of t, seriously over- or
underestimating the true probability figures. A larger sample should be taken
when one suspects a departure from normality in a directional hypothesis.
Some techniques for detecting such departures from normality are discussed in
Chapters 11 and 14.

4. When comparing two samples, the two parent populations must have
homogeneous variances. Although the t-test does not directly involve the
population variances, o’ and ¢, these two parameters must still be assumed to
be equal. This is necessary so that observed differences between samples can
be ascribed strictly to differences in the central tendencies rather than to
differing shapes of the distributions about the mean. This important assump-
tion, sometimes termed homoscedasticity, is a concept we will encounter again
in the discussion of correlation.

Note that the assumption about homogeneity of variances applies only when
two small samples are being compared. There is no assumption about o when
testing a single sample because S is obtained empirically and substituted
directly into the t-ratio.

But what if this assumption is violated? Although the assumption of
homogeneity of variance is more critical than that of narmality, sampling
experiments also indicate that (1) as long as the sample sizes are roughly equal
and (2) the parent populations have distributions of approximately the same
shape, the two population variances can deviate substantially from one another
without introducing undue error into the level of probability. As long as these
conditions are met (no matter what the variances may be) samples as small as
n =5 will produce acceptable results. The only difficulty is that a tabled
probability value of 0.05 will only be within +0.03 of the true level. For samples
larger than 15, the true probability will most likely be within £0.01 of the true
value. When one has strong reason to suspect that the variances are truly
unequal and the distributions are also of different shapes, then one should
explore the possibility of applying the Behrens test, described in Bliss (1967:
215-218).

® Sanity is not statistical.—G. Orwell

SUGGESTIONS FOR FURTHER READING

Statistical Aspects of Radiocarbon Dating

Long and Rippeteau (1974)

Ralph (1971). A beginner’s introduction to the laboratory and statistical methods
involved in radiocarbon dating; Ralph takes a single charcoal sample through
the dating process at the University of Pennsylvania laboratory.

Spaulding (1958)
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10.1

10.2

10.3

10.4

EXERCISES

The average pithecanthropine cranial capacity is generally estimated to
be about 1000 cc. Based upon cranial capacity alone, could the skulls
discussed in Example 10.4 be pithecanthropine (a« =0.01)?

A group of ten male skeletons has just arrived at a large eastern
museum. Unfortunately, they have been improperly catalogued, and
their place of origin is uncertain. Based upon the inadequate records
available with the collection, the museum staff has guessed that these
are North American Indian skeletons. The physical anthropologist in
charge computes that the average stature of the ten specimens is
161.3 cm with § =10 cm. Judging strictly from stature, is there sufficient
reason to doubt that these skeletons are American Indian? (Kelso 1970:
235, gives 163.7 cm as the average Amerind stature.)

The following two radiocarbon dates were obtained for level DI at
Danger Cave, Utah (Jennings 1957: table 11):

10,270+ 650  (M-204)
11,151+570  (C-610)

(a) What are the two-thirds limits of confidence for the Michigan date?

(b) What are the 95 percent limits for the true age of the Chicago
sample?

(c) What is the probability that the true age of M-204 is actually older
than 10,800 years?

(d) What is the probability that the true age of M-204 lies between 10,000
and 11,000 years old?

(e) Whatis the probability that C-610 is actually 10,800 years or younger?

(f) Suppose that the true age of both samples was known to be 10,715
years. Which sample came closer (in terms of probability) to estimat-
ing the true age? (Hint: Be certain to consider the relative standard
deviations.)

In a study designed to determine the relationship between climate and
facial structure, Koertvelyessy {1972) obtained the following figures for
frontal sinus surface area in Eskimo males:

Standard
Mean, cm® Deviation, cm® n
Colder habitat 2.076 1.974 33
Warmer habitat 3.794 2.866 29

(a) Do the Eskimo from the colder environment tend to have signifi-
cantly smaller frontal sinuses?

(b) Would an Eskimo with a frontal sinus area of 5.0 cm® be considered
“‘aberrant” in the colder habitat?

- e o
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A team of investigators measured the root length of the first mandibular
premolar in a sample of American Whites and American Blacks (data
from Moss, Chase, and Howes 1967: table 4):

American American
Whites, mm Blacks, mm
Mean 148 14.4
Standard deviation 0.97 1.97
n 15 7

(a) Is there a significant difference in root length?

{(b) Could the American White population average a root tength longer
- than 15mm?

(c) Could the American Black population average less than 12mm?

Two kinds of rooms are often found in the pueblos of the American
Southwest: large rooms, probably involved in day-to-day living, and
smaller rooms, most probably used for storage (Hill 1970). One useful
indicator of the prehistoric function of these rooms involves the kinds of
pottery sherds they contain. Since modern pueblo families generally
take their meals in the habitation rooms, we can expect to find more
pottery from food plates and bowls in the habitation areas than in the
storage rooms. Similarly, large storage jars should be more common in
the storage rooms. Unfortunately, several other variables—such as
family size, methods of food preparation and storage, differential
hygiene (some families sweeping their floors cleaner than others), and
time of occupation—also enter into the recovery of pottery sherds,
hence obscuring room function.

In order to minimize the effects of these extraneous factors and
concentrate strictly upon room function, an experiment was designed to
test for differences in pottery frequency. In a particular pueblo, it became
apparent that each large room was directly connected by a doorway to a
smaller room. The inference is that a single family used both rooms, one
for storage and the other for habitation. By pairing the large and small
rooms on the basis of a shared doorway, many of the extraneous
variables, such as family size, sanitary practices, and so forth, can be
controlled. After excavation, the density of cooking sherds was com-
puted as follows:

Sherds per Cubic Meter

Doorway Large Room Small Room
A 23 11
B 42 36
C 12 10
D 15 17
E 62 49
F 39 28

o
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Assuming that these sherds reflect only food-preparation vessels and not
food storage, can we conclude at the 0.05 level that more cooking took
place in the large rooms?

*10.7 The Grasshopper site is a rather large masonry ruin located in Arizona. In
an attempt to infer changes in prehistoric social organization, ex
cavators have carefully recorded the dimensions of each room, and also
of the fire hearths associated with rooms (data from Ciolek-Torello and
Reid 1974: table 1):

} Room Room Size, m* Firehearth Size, cm”
18 Later rooms
| ‘ 3 18.6 838
B 5 13.7 589
6 15.8 1860
7 21.3 1440
11 12.9 1456
13 14.4 800
205 b k4 1004
216 17.5 761
218 22.4 1435
319 23.4 1444
349 16.1 1386
359 25.9 1140
KYa| 15.3 1013
398 12.4 870
425 12.6 1534
Earlier rooms
1 17.3 1864
2 16.4 1350
18 220 2937
28 18.1 1564
146 15.7 1665

(a) Is there a significant difference in room size between early and late
rooms?

(b) Do these data support the hypothesis that the earlier rooms had
larger firehearths?

(c) Is the firehearth size more variable in the earlier rooms?






