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® THE LAW OF NATURAL PER VERSITY: You cannot successfully
determine beforehand which side of bread to butter.—L. Peter

11.1 INTRODUCTION TO NONPARAMETRIC STATISTICS

The theoretical models underlying the t- and z-statistics dre grounded in a few
explicit and rather important assumiptions. By way of review, the following is
assumed by the simple test for a difference between two means (see Section
10.9): o

1. The variable is defined on an interval or ratic scale.

2. The samples exhibit independent errors. o

3. The sample variates have been randomly selected from a normally distri-
buted population. '

These conditions are rarely tested outright. They are usually just assumed to
hold for the case at hand. As long as these requirements are reasonably
satisfied, the parametric model remains a powerful tool, enabling us to test
hypotheses and to establish confidence limits..

But must we set aside our elaborate parametric machinery when these
conditions cannot be assumed? Section 10.9 discussed one aspect of this
problem, noting that some degree of violation is permissible, as long as the
sample sizes are sufficiently-large and the hypothesses are nondirectional. That
t5, parametric methods are valid as long as the assumptions are at feast
approximately true. The f-test, for example, requires only that (1) the population
is approximately normal, (2) the variables exhibit fargely independent errors,
and (3) the scale is close enough to an interval scale. Normality need not be
Assumed for the t-test as long as the sample size is sufficiently large that the
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Cantral Limit Theorem comes into play. Fudge factors such as this allow
analysta to proceed under the parametric modei, even though the specifics are
gomething less than ideal. .

aut real data often place unaccepiable constraints upan parametric assump-
tions, constraints so severe that the model! simply does not apply, regardless of
how Inclined one might be to fudge the assumptions. itis precisely in samples of
amalier size that the normal distribution is most likely to be violated, and about
which one is forced to make an assumption of normality. When the sample is
smal!, the Central Limit Theorem is of no assistance. Once the basic conditions
underlying the parametric model prove unienable, the statistical inferences
based upon these false assumptions become likewise suspect. When one's
assumptions do not hold, the computed levels of probability no longer bear a
credible relationship to true probability values. Aithough a t-test can physically
pe computed on a nonnormal population or upon ordinal variables, the
resulting levels of significance are worse than incorrect. They are downright
misleading and confounding. The parametric model has a built-in gray zone
which permits a certain flexibility regarding assumptions. But there is a point
bayond which assumptions should not be stretched, a point at which parametric
methods must be scrapped in favor of a more realistic model.

This chapter introduces a sorely needed alternative to normal theory statis-
tics, since both the t-test and the standardized normal deviate assume {1)
interval or better measurement and (2) a normal distribution. The nonparametric
family of statistical methods assumes neither condition. Nonparametric statis-
tics comprise a large battery of techniques derived to free us from unrealistic
and restrictive assumpiions. There was surprisingly little interest in non-
parametric methods until the mid-1 940s when Frank Wilcoxon proposed a test
distinguished by its simplicity. Wilcoxon's test assumed neither interval meas-
urement nor normal distribution of population variates, yet produced excellent
results when compared to the common t-test (Wilcoxon's test is presented in
Chapter 12). Over the past three decades, literally dozens of nonparametric
devices have been derived to cope with the social science problems. Unfortun-
ately, most nonparametric methods lack the efficiency of Wilcoxon's test. In fact,
some tests extract a dear price indeed in terms of information lost, but at ieast
they offer a viable alternative to the parametric assumptions.

A statistic is nonparametric if any one of the following conditions applies (after

. Conover 1971: 94}

1. The statistic can be used on nominal scale data; or
2. The statistic can be used on ordinal scale data; or .
2. The statistic can be used ona random variable of unspecified distribution.

Tihe first two conditions allow the valid analyses of nominal and ordinal
arighiles. This is especially important for anthropologists, who are often forced
gal with rather crude scales of observation. The third condition, that data
san from a distribution of unspecified shape, has led some statisticians to
aats distribution-free.

¢ statistics have several advantages beyond mere freedom from
£ ‘mptio'n. For one thing, nonparametrics usually require fewer

wutations tHan their parametric counterparts. Some nonparametric tests
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require only one operation to count plus and minus: glgns:
underlying nonparametric tests is usually easier for the. bﬂgil‘mﬂ
not be misled by this simplicity. Parametric methods ¢an{ AL
tesults in the hands of the skilled statisticians, but to the uninitiat&ﬁ iy
advanced methods can prove disastrous. The normal theory of statistliss has
been compared to an expensive camera, equipped with dozens ﬁf simplex
options. Trained photographers use such costly equipment to produce rekulis
worthy of the lofty price tag. But to the beginner, just learning the funiaimisnials
of photography, a new Honeyweil Pentax ESII with a 50 mm /1.4 Super-Multi
Coated Takumar lens, self-timer, FP and X sync, battery checker, PC torminal,
hot shoe, and shutter-release lock produces more confusion than well-expossd
negatives. There are times when a small Brownie box camera is preferable (o a
more expensive model costing 20 times the price. Nonparametric statistics have
much in commoen with the modest, yet dependable, Brownie camera. Both are
cheap and easy to understand, difficult to abuse, and rather easy to explain to

-one's friends. Small wonder that the term “'quick-and-dirty” is lovingly bestowed
upon the nonparametric statistics. _

Nonparametric analysis can also facilitate a more efficient collection of data. If
one strongly suspects that a given population is asymmetrical or otherwise
nonnormally distributed, then ordinal or even presence-absence methods of
recording data might be just as useful as measurements accurate to 0.01 mm.
Normal theory shouid not be applied to extremely nonnormal populations,
regardless of how precise are one's measurements. The nonparametric
methods also allow one to use smaller samples, sometimes saving additional
costly fieldwork. And the resulting probabilities from nonparametric computa-
tions are often exact, avoiding the -arbitrary cutoff points (critical regions)
necessary with the z- and t-statistics.

But all these obvious virtues of the nonparametric approach must not detract
from its role as a second-best substitute for normal theory. When information
gxists on the population distribution, and when level of measurement is
satisfactory, the normal theory should be used forthwith. To apply nonparamet-
tic methods to such situations is an ill-advised waste of information. Further-
more, the comforting phrases “‘nonparametric” and "distribution-free” must
not be misread to imply “assumption-free.” Nonparametric methods make a
couple of rather critical assumptions which cannot be ignored.

‘Although you might not have realized it, a nonparametric statistical test has
already been introduced. The binomial test (Chapter 8) assumed neither a
normal distribution nor an interval leve! of measurement. Hence, the binomial
test qualifies as nonparametric on two counts. Binomials such as heads-tails,
male-female, or blood type are only nominal level variates, and a moment's
rotlection reveals that a Bernoulli variable could not be distributed normally
because only two possibilities exist for each variable.’

Several additional nominal-level nonparametric tests are presentad in this
chapter, including the ubiquitous chi-square test. Chapter 12 considears furthar

'Be careful here not to confuse the binomiat statistic with the variables themselves. The binemat
slallstic becomes distributed in normal fashion as the sample size increases (in fact, Ihi % &
whoractesistic common to many nonparametric statistics), but this is a vary differant matisr indieg 1o
assuming that the variates themselves distribute normally. :
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nenparametric methods which are suitable for ordinal level variates. More
advenced nonparametric methods of correlation are presented in conjunction
with thelr parametric counterparts.

® General Grant only knew two'songs—one was Yankee Doodle
and the other wasn't—A. Gingrich

11.2 THE CHI-SQUARE TEST

Chi-square gets my vote as anthropology’s most used (and abused) statistic.
The technique is flexible, and the computations are elementary -and easily
cartied out without computational machinery. As long as certain limitations and
assumptions are satisfied, the chi-square techniques can play a pivotal role in
guantitative anthropology. . -

Recall how useful the binomial distribution was when a given trial had but two -
possible outcomes—success or failure. Several examples from Mendelian
genetics were discussed earlier. One of Mendel's experiments considered
round and wrinkled peas {see Example 11.1), which were expected to occur in
the ratio of 3:1. Outcomes of this sort were characterized as simply R {success)
or W (failure). Mendel's breeding experiments involved a simple null
hypothesis: H.: p =0.75, where p is the probability of a round seed on a given
trial. The associated probabilities were computed and compared with the
theoretical binomial probability.

Viewed another way, binomial experiments compare empirically derived
observed (0) values with theoretically expected (E) figures. The normal approx-
imation to the binomial can also be used to test H,, provided n is sufficiently
farge (n being the total number of seeds observed).

But suppose there are more than two possible outcomes. Many genetic
situations involve several significant phenotypes, too many outcomes 10 be
succinctly characterized as success or failure. There are, for instance, four
equally likely blood types for the offspring of a heterozygous A and a hetero-
zygous B.

Qffspring

Parents Genotype Phenotype

a0 ab AB
ao A
bo bo B

00 O

oo

Mandelian theory tells us that, in the long run, unions of this sort should
produce offspring with blood types AB:A:B:0 in approximately the ratios of
1:1:1:1. The expected frequencies for a sample of n =100 such offspring
would be {E = np). '
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Type AB: E,=100(0.25) = 25
Type A: E.=100{0.25) = 25
Type B: E;=100(0.25) = 25
Type O:  E.=100{0.25) = 25

These expected figures can then be tested upon an actual sample of 100 such
offspring. Suppose the empirical data consist of the following observed {OQ))
values:
Type AB: 0.=32
Type A: =13
Type B: O;=24
Type O: 0,=31

The observed values are not equal to exactly 25 for each blood type, but random
sampling theory predicts that some degres of deviation is likely. We must decide
whether these observations conform to the expected Mendelian frequencies or
whether the deviation is too great for the theory to hold.

Had this situation been expressed in terms of success and failure—such as
the probabiiity of obtaining Type AB blood as opposed to all other types—then p
and g could have been defined as before and the binomial theorem used to
compare the expected with the observed vatyes. But introducing more than two
possible alternatives (E, with k > 2) vitiates the binomial theorem as we know it.

Fortunately, the x* (to be read “chi-square”) test was designed for just such
situations: .

(0, -E)
=1 EJ

. where O; are the experimentally observed values and the E, are the thecretically
axpected frequencies for the kth class. There is no limit to the magnitude of k In
the x* distribution,” as there was in the case of the binomiai {where k = 2),

- The chi-square statistic sums the deviations for each class in the frequency
distribution. The (O,— F) differences are squared to produce a nonzero sum.
The squared deviations are then divided by the expected number of cases in
each measurement class. This standardizes the chi-square statistic, just as the
variates in a normal distribution were standardized into z-scores. Dividing by E,
waights the contribution of each class so that the biggest proportion of the
chi-square sum does not always come from the most numerous ciass. '

The value of the x* statistic is best computed from the following conventionat
tabufar format (x° in this case is 9.20).

(11.1)

“Some introductory textbooks label the chi-square statistic X2 rather than x" and, In & 3inict sonse,
thia procedure is more accurate. The values listed in chi-square tables are reatly statiatioal aatimations
ot true chi-square parameters. The computed values of the chi-square estimator can vary somewhal
bocause it is sometimes necessary to “correct for continuity”” (Section 11.4). While theas conaiders- .
bong are germane o a truly exhaustive consideration of this tachnique, auch rigor i boayond the .
wrrent scope. The symbol x” is used here to indicate both the estimates obtained from compulation
wd the tabled values of the chi-square statistic. By so doing. we can avoid any confusion between 57
and the symbaol for the common variable X i ) )
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Biood’
Type o - & (0-E) (O~ EY {0, - EY/E
AB 32 25 7 49 1.96
A 13 25 -12 144 576
B 24 25 —~ 14 1 0.04
s} 31 25 i 36 1.44
100 100 0 2 =9.20

But computing a chi-square statistic is only half the battle. So far, no decision

can be made about the probability of any observed vaiue of chi-square. That is,
a sampling distribution for the chi-square statistic is necessary so that we can
judge the acceptability of a nu'l hypothesis. Just as with the normal distribution,
the probability of obtaining exactly the expected outcome is zero for a
continuous random variable. A certain amount of variability is expected in the
chi-square statistic, just as yariability was expected in the ABO blood type
experiment itself.
But how much variability should we expect? To answer this question,
statisticians have repeated randomized experiments jiterally hundreds of times
and then constructed histograms of the chi-square sampling distribution. Two
variables are involved in the sample chi-square experiments: the number of
experimental cases {n) and the number of observed-expected comparisons (k).
As long as n is kept above critical minimum values, the frequency distribution of
2 grablilizes within each leve! of k. But instead of dealing directly with K, we
must follow a procedure similar to that of the t-test (Chapter 10), and instead
consider the number of degrees of freedom, where df = (k —1). Degrees of
freadom in this case refers to the number of classes within a chi-square table,
which may be filled arbitrarily without altering the expectations. '
Note that degrees of freedom for the x* distribution is determined by k, the
number of independent observed-expected comparisons, rather than by sample

size (n). For the ABO blood-type experiment,
n =100, k=4, di=(4—-1)=3

The chi-square distribution for 3 degrees of freédom is known to follow the
distribution given in Fig. 11.1.2 The x-axis represents the range of possible X’
values; chi-square cannot drop below zero and the right-hand tai! asymptotes
toward positive infinity. The ordinate, scaled in probabilities, ranges between
zero and unity. Although chi-sguare distributions are generally quite asymmetri-
cal, there exists a close parallel between normal and chi-square distributions.
Both curves represent prohabilities. The higher the curve, the more probable is
the interval represented. As x* becomes larger and larger, the probability of
observing this or larger values diminishes. Figure 11.1 indicates that 50 percent
of all observed x” (with df = 3) are expected to exceed 2.4. Only 5 percent of the
x© variates should exceed about 7:8 and only 1 percent of the ¥ % values should
be greater than about 9.21. But because there is a difierent graph for each
scope of the present text (see

3The actual derivatien of this curve, and its formula, are beyond the

Hays 1973: 432-436).
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100% 50% 25%
e}

0.20 —

0.15 —

Probability

0,10 —

0.05 2,20

1 I | J | I 1 I i
i 2 3 4 5 6 7 8 9

Values of x* Statistic

Fig.i1.1 Probability distribution function of x* values with 3 degrees of freadom,

change in the number of degrees of freedom, these figures have been récorded
on Table A.5 (Appendix). '

Figure 11.1 enables us to evaluate the results obtained in the ABO blood -
group experiment. Chi-square was computed to be x° = 9.20, but until now we
had no way of relating this figure to a probability statement. We could not tell
whether this value represented a significant departure from expectation or
whether the observed deviations were likely by chance alone. Figure 11.1 shows
that an observed x®=9.20 or greater can be expected to occur less than 5
percent of the time. Actually, Table A5 shows this figure more accurately to be
yhos = 7.81473. The probability of any particular ¥* value is zero, as with any
continuous random variable. It is the probability of exceeding the given value
that is of interest in the chi-square test. '

A different chi-square probability distribution curve results for each change in
degrees of freedom. Several of these curves appear in Fig. 11.2. Each cutve is
asymmetrical, commencing at zero and tailing off toward positive infinity. Table
" A.5 presents the probability functions for the common significance levels and
for degrees of freedom up to 100.

Now we are in a position to use the chi-square statistic as a hypothesis-testing -
device. Consider y*® in terms of the six steps of hypothesis testing presented in
Section 9.2.

Step |. Statistical hypotheses: Mendetian theory predicted that blood types AB,

A, B, and O should occur in the ratio of 1:1:1:1. The null hypothesis for n = 100
trials is therefore '

Ho: E,=100(0.25)=25

E.=100(0.25) = 25

»=100(0.25) = 25

E.=100(0.25) = 25
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0.9
8
07
0.6
0.5
0.4
03
0.2
0.1

Probability

T T t I | I T 1 I T

T
0 1 23 4 5 6 78 9 101
Values of x* Statistic

Fig. 11.2 Probability ‘distribution functions for values of x® with several degrees of
freedom {after Sokal and Rohlf 1969: fig. 7.12).

The alternative hypothesis states that H, is false:
Hi: E1?‘-’25, E. # 25; E3?525; E.#25

Chi-square deals only with generalized deviation and the alternative hypothesis
in the chi-square test does not specify just which class (or classes) will deviate
from expectation. Any observed value with a large deviation from expectation is
sufficient to reject H..

Another phrasing of the statistical hypotheses expresses probabilities rather
than expectations. There are four classes in this example, k = 4. The probability
of class 1 occurring on a given trial is p, = 0.25; this is the probability of a given
offspring having Type AB blood. The probability of Type A blood—class 2—is
p:=0.25, and so forth. The statistica! hypotheses can be expressed in terms of
these theoretical relative frequencies (for any sample of size n).

Ho: pPi=pP2= Pa=Pa Hi: p1# pa#® Ps# Pa

This second version is usually easier to frame when the various probabilities are
equal, but in many cases (such as Example 11.2), the expected frequency null
hypothesis is easier to visualize.

‘Once again we should mention the relationship between the chi-square and
the binomial distributions. So long as k =2, then the binomial distribution is
idantical to the chi-square distribution (see Example 11.1).

Step . The statistical model: The chi-square probability distributions {such as
those of Fig. 11.2) provide us with a statistical model. This model changes with
avarylevel of degree of freedom, so a number of different curves are necessary;
Tabie A6 summarizes several of the appropriate curves. Thus, our statistical
modeal-consists of the x° probability distribution when all assumptions {includ-
ifg Hi):are met. A region -of rejection for observed values of the chi-square
a-ta&iati ganbe defined, just as with the t-statistic and the standardized normal
deviate 2. If the observed x® does not deviate from expectation, then we have no
reason 16 question any of our assumptions, and H, survives. But when an
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observed chi-square falis into the critical region under-the g
tion, we must search for an invalid assumption. The ¢l
nonparametric statistic, as defined earlier in Section 11.1. Thi
the chi-square test are discussed in Section 11.5. As long
assumptions are intact—and a statistical test should not:h
assumptions are not valid—then our feiulty assumption mugt ;
hypothesis. All statistical tests operate in this manner. :

Step lll. Level of statistical significance: The alpha level is chosen e
Although the same general principles for selecting the alpha levelapply 1] '
chi-square testing, some confusion seems to arise regarding one- #ind twas
tailed alernatives. These difficulties will be discussed in Section 11.9.

Step V. Region of refection: The critical region is that area under the ¢his
square sampling distribution which contains unacceptable deviations, given
aipha. In the example at hand, with df = 4 — 1 = 3, the 0.05 critical region is given
by Table A.5 to be yjus =7.815.This means that any ocbserved chi-square greater
than or equal to 7.815 is unacceptably large, given a significance level of 0.05.
This is the statistical model against which the actual data are juxtaposed.

Step V. Calculations and statistical decision: Formula (11.1) is used to compute
the actual observed sample value of the chi-square statistic. In this case,
x*=9.20, a value falling into the region of rejection. Thus, the sample tends to
favor H; over H,, given «.

Step VI. Nonstatistical decision: As before, these quantitative findings must be
rephrased in terms of the research situation. The hypothetical random sample of
n =100 offspring has contradicted Mendelian theory. Because such a large
deviation will occur by chance fewer than 5 in 100 times of such experiments,
we reject the Mendelian theory in this case and search for alternative genetic
explanations for our deviant results. '

Example 11.1

In 1859, Gregor Mendel conducted a genetic experiment with pea plants -
(Pisum) which were alfl known to be heterozygous for wrinkled seeds.
Mende! found that upon plant maturation, 5474 seeds from his experimen-
tal plants were round, while onfy 1850 seeds were wrinkled. Do these
results support Mendel’s theory that round seeds should outnumber
wrinkled seeds in a 3:1 ratio?

Step |. Statistical hypotheses: .
H,: p =075 Hi: p#0.75

where p is the relative frequency of round seeds.

Stép ll. Statistical model: The chi-square method is appropriate for
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- somparing these two disci‘e’te classes {round versus Wrink|ed seeds). The -
gasumptions of nominal nonparametric tests apply {discussed at the end
of Chapter 12). : .

Step 1. Significance jevel: Let « =0.05 fora two-tailed (nondirectional)
test, ,

Step V. Region of rejection: Table A.5 provides the sampling distribution
of the chi-square statistic. The degrees of freedom in this case are
di=k—-1=2-1=1.The critical region thus contains all values of the
chi-square statistic greater than or equal to xies = 3.841. '

Step V. Calculations and statistical decision: The standard chi-square
. format is as follows: .

Observed value Expected value

Qutcome G, E (0.—E} (0.-EY (O—E)/E
Round 5474 7324(0.75) = 5493 19 361 0,066
Wrinkled 1850 7324(0.25) = 1831 19 361 0.197

7324 7324 - X*=0.263

The observed chi-square statistic does not fall into the critical region. The
sample results hence favor H. at e =0.05.

Step VI Nonstatistical decision: This experiment does not repreéem a
* significant departure from the predicted 3:1 Mendelian ratios at a = 0.05.

For the simple case of k =2, the chi-square and binomial methods
produce identical results. For illustration, the same Mendelian sample can
be tested using the normal approximation to the binomial distribution.

' Step . Statistical hypotheses:
H,: p=np= 7324{0.75) = 5493 H: p# np# 5493
where p is the relative frequency of round seeds, and n is the total number
of seeds. '

Stap L. Sfatisticai mode!: The normal approximation to the binomial
distribution. Assumptions of nominal level nonparametric tests apply.

Step Il Significance jevel: Let @ = 0.05 for a two-tailed (nondirectional)
“test.

Step IV. Region of rejection: Any value of z = 1.96 will fail into the critical
reglon for « = 0.05.

Step V. Calculation and statistical decision: The experimentally observed




results must first be standardized:
X — i _ 54755493 -
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~0.48

L 37
where . =np =7324(0.75)= 5493 and o = Vnpg = V73 25) =

37.

H, is retained.

Step VI. Nonstatistical decision: This experiment does not rabi‘efuni ]
significant departure from the expected 3: 1 Mendelian ratio, at o= 0.08,

The observed value of z does not fajl within the region of rejestion and

Example 11.2

Suppose that a particular theory predicts that, in the leng run, huntet-
gatherer marriages tend to oceur in the following percentage proportions:

Spouse from own village, - 25
Spouse's village within 50 miles, 25
Spouse’s vilage more than 50 miles, 50

Julian Steward (1938: 67) collected the following data for the Northern
Paiute of the Fish Lake Valley of eastern California:

Spouse from own village, 4
Spouse within valley, 15
Spouse from another vailey, 13

Assuming that the radius of the Fish Lake Vailey is about.50 miles, are
these data consistent with the above theory? oo

Step I. Statistical hypotheses: The expectations arise from breexisting
theory: Marriages are predicted to occur in a 1:1:2 ratio for spouse from
own village, nearby village, and distant village. In other words, there are
=3}, each with a distinct probability: p,=0.25,

three different groups (k
p:=10.25, p;=0.50.

H,:

Hi:
Note here how the alternative hypothesis is Composite. H; simply states

E\ = np, =32(0.25) = 8
E:=np,=32(0.25)=8
Es=np,;=32(0.50)= 16
Ev#8; E:%8; F,#16

that one or more propositions of H, are faise.

Step Il. Statistical mode!: The binomial model is no longer applicabie
because more than two discrete classes are involved (k>2). This is why

H. is expressed as P+, Pe,

and p;; the p versus g notation of the binomia

applies only when k = 2. The chi-square sampling distribution ig retevant
here and nominal level nonparametric_assumptions apply. ) .
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Btep . Significance Jevel: Let a = 0.05 for a nondirectional test. Note

that we do not specify which of the E: classes is deviant. Any significant
deviation will reject H,.

8tep IV. Region of rejection: This example hasdf =k ~1=3—-1=2.The
critical region thus contains all chi-square statistics = y2,, = 5.99147.

Step V. Calculations and statistical decision:

|
-

Outcome O E (0-E) (0-E)f (O-EY/E
Own village 4 8 -4 . 18 2.000
Within valley 15 8 7 49 6.125
Another valley 13 16 -3 9 0.563
32 32 : x°=8688
This x® exceeds the critical value of Xoos = 5.99147 and falls into the region
of rejection. The sample data favor H,, so we reject H,.

Step VI. Nonstatistical decision: The Fish Lake Paiute data depart signifi-
cantly from the marriage theory at « = 0.05. Be sure to note here that
chi-square tells us only about the overall agreement with theory. By
examining the actual data, we see that the Fish Lake Paiute have a much
higher rate of spouses from within the valiey than the theory predicted.

11.3 TWO-BY-TWO CONTINGENCY TABLES

Section 11.2 introduced the togic for the chi-square statistic, but we have
considered only the univariate case. As the name implies, the univariate
chi-square test treats a sindle dimension, such as blood type, marriage prag-
tices, or seed shape in pea plants. Although univariate chi-squares can uitl-
mately handte an infinity of variables, each dimension must be considered ong
at a time. We will now examine the bivariate form of the chi-square test,
beginning with the simplest application, the 2 x 2 contingency table.

fn their study of urbanization and its impact upon family structure, Staniey
Freed and Ruth Freed collected data in Shanti Nagar, a small village in northern
India (Freed and Freed 1969). The Freeds were particularly concerned with the
response of traditional family organization to increasing industrialization. They
interviewed a random sample of 107 families to determine precisely how the
introduction of wage labor influenced traditional family structure.

Family head, 39 years and younger

Traditional job 26
Nontraditional cash .
income - 15 41
Family head, 40 years and older
Traditional job 59

Nontraditional cash
income
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TABLE 11.2 Chi-square test for goodness of fit for normality. Data are 99
breadth measurements on the first lower molar of pygmy
chimpanzee (see Table 4.3). ’

Class Interval,

mm o, E {O—E) (O —E) (0. —EYE,
<7.9 3 414 114 1.30 0.314
8.0-8.1 7 5.28 1.72 2.96 0.056
8.2-8.3 8 9.07 1.07 1.14 0.126
8.4-85 12 12.76 0.76 0.58 0.045
8.6-8.7 12 15.89 3.89 15.13 0.952
8.8-8.9 16 15.91 0.11 0.01 0.001
. 9.0-9.1 9 1412 512 26.21 , 1.857
9.2-9.3 18 10.26 7.74 59.91 5.839
9.4-9.5 9 6.27 1.26 1.59 0.253
>9.6 5 5.32 0.32 010 0.019
99 9902 x°=9.462

di=7; Xios = 14.0671.

area corresponds to the probability of a randomly seiected variate being smaller
than 8.0 mm. The expected fn_aquency forn =99 is

Ei=np,= 99(0.0418) = 4.1
The expected frequency of class “8.0-8.1" is determined in a similar manner:

: X:—X 82-8383
= = = =1, 1
=g =Toarg - 3

Az=0.4582 ~ 0.4049 = 0.0533
The second expected frequency is
E> = np, =989(0.0533) = 5.3

Expected frequencies can be similarly computed for the remaining classes in
Table 11.2. As a final check upon these caiculations, the summation of the
expected values must be equal to n within a smali rounding error.

Both expected and observed frequencies are now available. Chi-square can
be computed to determine whether the observed deviations are of significant
magnitude to reject the null hypothesis. - o

Ag mentioned earlier, testing for normality always involves a loss o3 degrees of
‘because both u and o must be estimated from sample statistics,
m ming a significance level of 0.05, Table A5 indicates that sincs
¥ myany < x50s = 14.067. The results are not significant, which means that this
%Fﬁg } of 89 variates could easily have been from a normally distributed
population of variates.

Example 11.7

I Exercise 3.6, the sample mean and standard deviation were computed
for & seres of 286 fluted projectile points from Virginia. Before performing
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a detailed attribute analysis on these data, archaeoluijist
tested the variates for normality (Fitting 1965: table 1). Do
measurements sufficiently follow a normal distribution at the

In order to keep all cell frequencles above 5, the first twi gfﬁ
(less than 2.8 cm) and the last twor divisions (longer than 10
pooled, thereby leaving nine categories (k = 9). The mean and stan
deviation of the sample are knowntobe X =5.8cmand § =2, 0 !
probability of any randomly selected variate from the populaﬂdn with
w=X=58 and ¢ =8 =2.07 falling into the first category (“less than
2.9cm") is the area to the left of X, =3.0cm in the z-distribution:

3.0-5.8
L7807

The expected frequency of this class is
E, = 256(0.0885) = 22.66

Other expectations are found in a similar manner.

= —1.35 A,=0.0885 .

Length,
cm o, E; {O,—E}) (O —~EY (G- EY/E
<28 8 22.66 —14.66 214.92 9.484
3.0~-3.9 30 26.68 3.3z - 11.02 (.413
4.0-49 56 39.99 16.01 256.32 6.410
5.0-5.9 60 49.02 10.98 120.56 2.459
6.0-6.9 35 45.88 -10.88 118.37 2.580
7.0-7.9 33 34.92 - 192 3.69 : 0.106
8.0-89 12 21.50 —- 850 90.25 4,198
9.0-99 13 10.09 2.9 8.47 0.839
>10.0 _9 543 3.57 12.74 2.347

256 256.17 x?=28.836

The degrees of freedom in this case are given by df = (k — 3) = 6, and the
critical value of chi-square is xos = 12.6916. Since'the observed value is
over twice this expected value, we can conciude that the fluted projectite
point lengths were probably not drawn from a normally distributed
population. Specifically, this significant departure is caused by the ab-
sence of very large points (that is, larger than 10.0 cm) and also by the lack
of points shorter than 2.9 cm. There also seems to be an overabundance of
points between about 4.0 and 7.0 cm.

11.9 SMALL VALUES OF x2: THE STRANGE CASE
OF MENDEL’'S PEAS

The chi-square variants discussed so far involved only the right- hand tail of the
chi-square distribution (Fig. 11.1). The reason for this is that the x* statistic iz
computed by summing the squares of the deviations. All these daviationy fram
the expected values are positive; therefore, the larger the summed doviationg
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the greater the chi-sguare statistic. Only the right-hand tail of the distribution is
thus involved.

We have also stressed the importance of directionality in the alternative
nypothesis for 2 x 2 tables. Directionality in this case is not identical to one- of
two-tailed hypothesis testing of the normal curve. The significance testing of the
chi-square distribution involves only the right-hand tail {regardiess of direction-
ality). As long as a priori directions were specified in 2 x 2 tables {either ad > bc
or ad < be), the alpha level must be halved. A directional result significant at the
tabled 0.10 value, for example, is in fact known to be significant at & = 0.05.

But do not conclude from al! this that y¥* methods must afways be concerned
with only the right-hand tail of the distribution. There are some unusual
instances when one might WISh to determine whether the sum of the squared
deviations (as reflected in the y” statistic) could be too small to be attributed to
chance alone. Suppose that an experiment with 10 degrees of freedom pro-
duced a chi-square of, say, 3.00. Table A.5 indicates a probability of greater than
0.975, corresponding to x*=3.00. That is, there is more than a 97.5 percent
chance of a randomly generated chi-square statistic occurring to the right of
3.00. However, this situation can also be reversed: There is less than 2.5 percent
chance of a randomly generated chi-square value falling to the left of x* = 3.00.
Very small chi-squares are themselves rare events, with a known probability of
occurrence. In a strictly probabilistic sense,” an extremely smalt chi-square
disproves the null hypothesis just as surely as would a very large chi-square
value. But within the conventional hypothesis-testing format discussed in
Chapter 9, chi-squares with associated probabilities of p = 0.975 or larger (while
still a rare occurrence) do not allow the rejection of H,. In fact, the null
hypothesis appears to be strongly supported by such results. To resolve this
problem, it is necessary to stress again that statistical hypcthesis testing must
be problem-oriented. Procedures must be designed to answer specific ques-
tions at hand rather than merely to blindly follow rigid formats of inquiry.

The problem of the small y¥? is well illustrated by the classic genetic
experiments of Gregor Mendel. Every beginning anthropology student has been
subjected to the traditional tale of how Gregor Mendel, an obscure monk,
discovered the laws of inheritance. His work was relegated to obscurity until 16
years after his death, when it was miraculously rediscovered by no fewer than
three independent scientists. This parable is taken as a tribute to the self-
corracting nature of science (the truth will out}, and the tale also seems to
support the doctrine of independent invention. Independent cultural trajectories
can be parallel and often repetitive.

At any rate, statistician Sir Ronald Fisher has posed a highly heretical
question. Should we take Mendel! literally? Fisher, himself an accomplished -
ganeticist, reconstructed Mendel’s famous experiments from various contem-
porary netes and reports. According to Fisher's reconstruction, Mendel took
aight years 1o complete his experiments. Mendel apparently discovered the
gritical- 3+ 1 phenotypic ratio rather early in the experimentation, and Fisher
wontdared 8loud whether the actual published experiments represented a true
digcovary: or-a'staged demonstration to illustrate previous findings.

Fiahgr anilyzad Mendel's later results, using the chi-square test to scrutmlz&
the role %zhanae ln the genetlc experiments. One of Mendsl's experiments, fo¢
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instance, was designed to illustrate the independent segregation of genetic
factors—in this case, seed shape and color. In Mendel's notation, the following

@onditions were involved:

Seed Shape Seed Color
AA Round (homozygous) BB Yellow {homozygous)
Aa Round (heterozygous) Bb Yallow (heterozygous)
aA Round (heterozygous) © bB Yellow (heterozygous) -
aa Wrinkled (homozygous) bb Green (homozygous)

Mendel ' theory predicts that if the two traits truly segragate randofmy in the
same plants, then the progeny should appear in a fixed ratio 9:3:3:1, as

fotlows: .
(round, yetlow}: (round, green) : (wrinkled, ysltow) : (wrinkled, green)
9 : 3 : 3 : 1
In 1862, Mendei harvested the seeds of 15 plants known to be heterozygous
on both seed shape and color. The offspring seeds were harvested the following
yoar with the following results:

Seed Shape o

Seed Color AA Aa as Total

88 .38 80 28 128
Bb 65 138 88 an
bb 35 67 80 12
Total 138 265 126 529

The predicted ratios {8:3:3:1) were found In the 1883 experiment to be
9.1:3.1:2.9:0.9. When Mendel published these and othegr findings, he did not
analyze the element of chance in experimentation. (The ¢chi-square distribution
was unknown at the time, but enough was known about the binomial distribu-
tion to estimate the probability of obtaining such satigfactory results,) Mendel
ignored random effects and declared that the experimentally devised ratios
overwhelmingly confirmed his predictions. These experiments eventually estab-
lished the independent segregation of genetic iraits.

As science progressed throughout the early twentieth century, the role of
chance became an important criterion in experimantal design. Writing in 19386,
Fisher wondered if, given the normal exigencies of genetic experimentation,
Mendel's results could be foo good 7 In effect, Fisher tested the left-hand side
ot the chi-square distribution to see if there was fess deviation (that is, too low a
\ ~ value) than one should expect under chance conditions. Fisher’s actual
computations {Fisher 1936) were quite similar to the bivariate Rx C tables
considered in Section 11.3. But in this case, the expected probabilities were
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computed from Mendel's theoreticaily predicted ratios rather than from margi-
nal totals.

Ganolypa Phenotype Qs E =np (0, ~-EY (O-E)Y (0-EWE
BE-AA Round, yellow 38 529(1/16)= 33.06 4.94 24.40 0.7380
BB -An Round, yellow 60 528{2/16) = B66.12 6.12 37.45 0.5565
Bb-AA Round, yellow 65 528 (2/16) = 66.12 1.12 1.25 0.0190
Ab-~Aa Round, yeliow 138 529 (4/16) = 132.24 5.76 33.18 0.2510
bh-AA Round, green 67 529 (2/16) = 66.12 .88 0.77 0.0120
bb-Asg Ropund, green 35 529 (1/16) = 33.06 1.94 3.76 0.1140
BB-aa Wrinkled, yetlow 28 529 (1/16) = 33.08 5.06 25.60 0.7740
Bb-aa Wrinkled, yeliow 68 529(2/16) = 66.12 1.88 3.53 0.0530
bb-aa Wrinkled, green 30 529(1/16)= 33.06 3.06 9.36 0.2830
529 528.96 x°=2.8005

These calculations produce a chi-square value of x®=2.8005, with df=
(k —1)}=8. Table A5 indicates that almost 95 percent of all chi-square values
{with 8 degrees of freedom) are expected to fall to the right of x*= 2.73264. In
other words, we expect such a Jow chi-square only about one time in every
twenty independent experiments.

So, in this particular bifactorial genetic experiment, Mendel obtained results
which were uncommonly ¢lose to expectation. Fisher went on to investigate the
remainder of Mendel's experiments conducted during this eight-year interval.
When all these experiments are combined into a single chi-square figure, the
computed value of y* = 41.606 with 84 degrees of freedom, a figure correspond-
ing to a probability of p = 0.9993. Remembering that chi-square tables refer only
to the right-hand tail of the chi-square distribution, the actual probability
associated with Mendel's compleie results is only p = 1.000 = 0.9993 = 0.0007.
That is, Fisher demonstrated that there are fewer than 7 in 1,000 chances of
obtaining Mendel’s results by chance alone.

. -How do we account for Mendel’s near-perfect findings? The early experi-

ments (probably in 1858) may have come as such a revelation to Mendel that he
knew encugh at that time essentially to frame his entire theory of genetic factor
and gametic segregation. His confidence in his early discovery can be seen in
several ways: He conducted no further experiments directly to test the 3: 1 ratio,
since he had already established this to his satisfaction; he ignored the
ther-current body of statistical inference, through which he could have “‘tested"
hig results; he conducted no tests to establish the equivalence of contribution
{rom each parent, preferring simply to assume the 3:1 ratio once again. While it
Is unfaif fo accuse Mendel of directly doctoring his results, Fisher contended
ggare analysis clearly indicates that most (if not all}) of Mendef's
ta must have been falsified to agree with expectation. Perhaps
tjgures were intended only to illustrate his general principles. Perhaps
ware not to be taken seriousily. Mendel could have purposely
gunts, in order to support a principle he knew to be correct. It is
at Mendel was deceived by overly loyal assistants who knew all
too well what results the good monk Mendel expected.
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Whatever the ultimate explanation, the point is not to deride Mendel's
contribution to genetic theory. His: insights alone qualify him for plaudits,
regardless of the experimental evidence. This intriguing case merely illustrates
another application of the chi-square statistic, the situation in which x® is too
small to allow for a normal amount of randomness. Mendel's experiments seem
to illustrate Fisher's generalization that “fictitious data can seidom survive a
careful scrutiny, as, since most men underestimate the frequency of large
deviation arising by chance, such data may be expected to agree more closely
with expectation than genuine data wouid" {Fisher 18386).

11.10 FISHER'S EXACT TEST

Il was mentioned earlier that although the chi-squarg distribution is estimated
by a continuous curve, observed frequencies are always compared with ex-
pected frequencies aiong discrete intervals, All chi-square gtatistics therefore
only approximate the chi-square continuous curve. These approximations are
suitable for most purposes, as long as n is kept suitably large, but in many
anthropological cases the frequencies of interest are simply too small to be
tested for significance by chi-square methods. Ronald Fisher, the same Fisher.
who investigated Mendel's genetic experiments, derlved a technigque for com-
puting the exact probability of contingency tables, The approximations are
thereby avoided altogether, and this procedure Is known as Figher's Exact Test.
Consider again the generalized 2 x 2 contingenty table:

First Variable
Second Variable + -~ Totad
+ a b {a+B)
- c d {¢ +d}
Total (a +¢) (b +d) n

To determine whether a particular set of results is too rare 1o have arlsen by
chance alone, it is necessary to find the probability of obtalning these frequen-
cies in a random experiment. One proceeds in such cases as though this sample
were really a population, so the statistical situation can be rephrased: Given the
observed marginal totals (which are regarded as fixed), what Is the probability of
getting random observations within a contingency table as extreme as the
observed a, b, ¢, and d, or results even more extrerne?

The number of “successes’” for a 2 x 2 contingency table is defined as the
number of possible ways in which the observed cell frequencies could have
been randomly selected. Although the derivation of the formula is beyond the
scope of this text,’ it is known that :

f n!
number of successes = "

“This farmuia has been derived from the coeflicients of the multinomial distribution, which is
anatogous 1o the binomial situation except that the possipie outcomes are not limited strictly to
success and failure. In this case, there are four possible outcomes for each trial, namely, a, £, ¢, or d.
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The probabllity fraction associated with this event, the number of successes,
becomes the numerator. The denominator in this case is the total number of
ways in which a 2 X 2 table could be constructed with the same marginal totais.
Beginning with the row totals, (a + b) and {¢ + d), how many ways can n items
ha randomly selected such that (a + b) is a success?

Because the order of selection is irrelevant to the probability fraction, the
number of randomly selected successes is given by Cue.n. Similarly for the
column totals, there are exactly C...) possible successes. You should con-
vince yourself that identical results would be obtained had either (¢ + d) been
selected for the rows, or (b + ¢} for the columns. To obtain the total possible
combinations between rows and columns, it is necessary to multiply the
individual outcomes. Hence, the total numerator of the probability is given by

_ nl . n!
Cra=t1* Cataver = (a+b)l{c+d) {(a+c)(b+d)!

From the coefficients of the multinomial distribution it can be shown that there are

nf
alblcld!

ways of obtaining the observed cell frequencies. Thus, the probability of obtaining
a contingency table with cell frequencies a,b,¢, and d can be computed as the ratio
of the two quantities given above. This can be simplified to

+b) (o +d){a+ )l (b+d)
=820l ({;Ha!)b(!ac!g? ( : (11.7)

This equation facilitates computation of the exact probability of obtaining the
frequencies observed in the 2x 2 table. But we need to test a nulf hypothesis
which considers not only the frequencies observed but also results to be
potentially more extreme than those actually obtained. It becomes necessary to
compute each individual probability associated with the more extreme results.
The summation of all these exact probabilities comprises Fisher's Exact Test.
Consider the following example, which illustrates the computational proce-
durés involved. Suppose that 14 mummies (6 males and 8 females} werg
discovered in a prehistoric habitation cave in western Nevada. Of these burials,
] wera found to be lacking heads (a frequent custom in this area). From the data
at hnnd isit justmable to conclude that males were more frequent!y decapitated

With Skulls Without Skulls Total
0 6 6
5 3 &
5 g 14 burials
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Specifically, we are interested in whether the two sets GF:
gategories (sex and burial condition) sort independently of on
this sample been larger, the question could have readily been résoived:
ghi-square test, but because n =14 and there seems to be
increasing the sampte size, chi-square must be ruled out (for precige’
an the minimum sizes recommended for the chi-square test, sée Seation¥1.11).
it is precisely this sort of situation in which Fisher's Exact Test proves -ty he
viluable. -

Fisher's test is designed to answer one question: What are the chances of
abtaining observed results as extreme (or mare extreme) as those obtainad in
the experiment? The null hypothesis here is that males are just as likely to be
gecapitated as females. The alternative hypothesis considered the probabiilty
that males are more frequently decapitated. Specifically, under the alternative
nypothesis, we expect: :

Few males with skulls {cell a)
Several males without skulls (cell b)
Several females with skulls (cell ¢)
Few females without skulls (cell d)

S0, in this case, the alternative hypothesis is directional.’
H:: ad <bc

We can see by inspection that indeed ad < be, as expected, but we need further
1 determine whether this could occur by chance alone. (Had the reverse
situation occurred in the observed data (ad > b¢), then H, is obviously wrong
and no test of statistical significance is required.) ,

The level of significance must be halved because the alternative hypothesis is
#irectional (are more males decapitated?). In order to reach significance at
@ « 0.05, the exact probability must be tess than or equal to p = 0.025. This is
the region of rejection for Fisher's test. .

The exact probability is found by substituting the observed archaeotogical
frequencies into Formula (11.7): '

__6!8!5!0l
P=Tar016!15131
4

=1a3° 0.028

flemember that the final probability in Fisher's Exact Test refers to the observed
srrangement, or more extreme arrangements. Since H, predicts that ad < be,
ihare can be no more extreme arrangement than having a zero in ceff a. In tact,
whenever a zero occurs in any cell of a 2x2 table, the single probability
. pmputation covers the most extreme case because no fraquency can be more
sxtreme than zero.

‘when cells & and d are predicted to be common, & “positive” association is said to oxist
.nversely, when the variables are inversely proportional, with cells b and ¢ more comman, then
~apative” association exists. The terms "negative’ and “positive” are arbltrarlly aasignsd to
r ninguish the two sorts of directional atternative hypotheses which might exist in 2 = 2 canlingenay
“woins (Coult 1965).
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The computed value of p =0.028>p, « = 0.025, an observed figure falling
sutside the region of rejection, and the results are judged not to be a significant
departure from randomness. The excavator cannot justifiably conclude that
men within this particular cave site tenged to be decapitated more frequently
than women. .

Suppose that the data occurred in the following configuration:

Burials With Skulls Without Skulls Total

Male 10
Female 8
Total 18

The alternative hypothesis in this case is that be < ad. The probability of
obtaining exactly such an arrangement is

101811117
Pz=3g18121315!

Fisher's test is also concerned with more extreme probabilities, so we must also
consider all cases in which the product of bc is lower than the observed case;
that is, when bc <3(2)=6. The overall probability of occurrence is given by

p=potprt---tpr
where r = frequency of the rarest ceil +1.
in other words, the overall probability is the sum of the individual observed
frequencies plus all other less likely probabilities, given constant marginal

totals.

These additional probabilities can be determined by subtracting 1 from both b
and ¢ (and, of course, adding 1 to a and d in order io keep the row and column
totals constant). The second most exireme arrangement is

bo=(2-1)3-1)=2

= 0.079

and the third most extreme arrangement is '
bc=(1 w1)(2f1)=0

Call b s empty in the third case, so there can be no more extreme arrangements
glong the diagonal be. :
For the present example, p. has aiready been computed to be 0.079.
: _ 1018!1117! '
P1=1grol11216!
_jot811117!
Po=Tg11010111 71

=0.0088

=0,00025

The ta!él_-'p'l:'ababillty of the observed frequency or those more extreme is .
T p w py+ py + po=0.079+ 0.0088 + 0.00025 = 0.088
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This final probability figure of p = 0.088 is sufficiently greater than p, = 0.025
assigned so that the null hypothesis cannot be rejected. The observed fre-
guency of this second example could well have arisen simply by chance. '

So far, we have used Fisher's Exact Test only to examine the directional
_ afternative hypothesis; in the strict sense, this test should be reserved for
directional cases. But there are times when an alternative hypothesis can be
stated only about the existence of an association rather than its direction. The
alternative hypothesis in such cases is simply

Hi: ad# bt

in addition to the probability of obtaining the observed frequency, one must

also compute the more extreme positions of positive (ad > be) and negative
' (ad < bc) associations.

Suppose that the last problem had been expressed diftorently? Does decapi-

. tation appear to have any association with sex? No direction s expressed in this
statement, so both positive and negative assoclations must ba considered. The
probability of more positive associations was somputed above, so all that
remains to solve the nondirectional hypothesis is to determine the probability of
the more extreme negative associations.

The most extreme negative association would ba when ¢ell d is empty,
rendering ad = 0. The probability for this case Is -

10!811117!

P oiasastvsl = 7813171 81 01 = (0,0058

The next smallest extreme negative association (with & 1 In gell d) has the
probability of L

_ 1018t 11171

P 1ioesaive) = 1ay 41716111

Both cases are “more extreme” than the observed arrsngamant of frequencies
because their probabilities are smaller than the observed frequencies:

P o (negative) = 0.0038 By = 0»079
P 1 inegative) = 0.0528 Py = 0.07¢

The next largest negative association (with a 2 In calt d) has a probability of

1018111t 7L
P 2ineguive = 3815151 61 21

This probability is not “more extreme” than that of the observed arrangement
{p,=0.079), and the value of Pz pegatvs = 0.2217 should not be included in the
summary probability statement.

The total probability of the two-tailed alternative is given as the sum of (1) the
probability of the observed case, (2) the probabilities of more extrema positive
associations, and (3) the probabilities of more extreme negative associations:

= .0628

= 0.2217

p= Pzt Pt Pot Powesne D4 nepestive)
= 0.079 + 0.0088 + 0.00025+ 0.0038 + 0.0528
=0.145
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SBacause this fina! probability p = 0.145 > p. = 0.05, the nuli hypothesis cannot
be rejected for the nondirectional case.

Fisher's Exact Test involves a prodigious amount of calculation when the
amatlest cell frequency on the relevant diagonal is much greater than about 3. In
such cases, one is well advised to process these data upon a computer, and
adequate programs are readily available {for example, Sokal and Rohif 1969:
702-703). There are also tables to cover some of the values for Fisher's Exact
Test (Siegel 1956: tables; row and column totals smaller than 15). Unfortunately,
these tables partially vitiate the precision of the “exact” test, since one reads
only significance levels rather than the exact probabilities. But for most
hypothesis-testing purposes, these levels of significance are adequate.

Example 11.8

Noncommercial societies often practice a unilocal residential pattern in
which the newly married couple moves to a prescribed setting: patrilocal,
matrilocal, or avunculocal. Both societies may also simultaneously prac-
tice two or more patterns of consanguinal residence, in a situation termed
multitocal. Carol Ember and Melvin Ember (1972) conducted a cross-
cuitural study to test several explanations of the multilocal residential
pattern. One theory holds that multilocal societies tend to have undergone
recent depopulation so that choice of spouses is limited to a survival
population. For purposes of this test, the Embers operationally defined a
population as depopulated if the population had dropped more than 25
percent in the 30-year period prior to fieldwork.

Do the following 27 cases, randomly selected from the Human Relations
Area Files, support the depopulation hypothesis at the 0.05 level?

Data of this sort are commonly presented in a special form of the 2x 2
contingency table, in which the actual society name rather than simply the
cell frequency is entered into the cell. Presentation in this fashion allows
investigators to examine the sample societies for other variables of
interest, such as geographic area, subsistence base, or linguistic stock.

Multilocal Residence

Depopulation Present Absent Total
Present . Chukchee Crow
i Comanche Kaska
lla : Tapirape
Lau Tehuelche
Mandan Tlingit

Nambicuara
Yaruro | 12
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Multilocatl

Depopulation Present .Absent Total

Absent . Burmese Annamese
Aymara
Bikinians
Byrusho
Cuna

Kikuyu

Kol

Lepcha
Pukapukans. °
Sett

" Somati
Tikopia

Toda

Wogso .18

Total 8 18 .27

The diractional alternative hypothesis (do muitilocal awiaﬂea tand to be
depopulated?) mvolves a “‘positive” association:

H.: ad>be

For these results to be significant, the observed probahilﬂy midat exceed
a/2=0.06/2=0.025.

Fisher's Exact Test is appropriate in this case becauss of the low
expected frequency in cell d: (E: = 15(8)/27 = 4.44). Twb separate- prob-
abilities are computed: the observed case in which celi ¢  contains one
case, and the more extreme instance in which cell ¢ would have been
empty {but with the row and column totals fixed).

The probability associated with the observed freguencies is

_ 12!15!19: 8!
P = 5817114771

= 0.00535

and the probability of the more extreme case on the ad diagonal is

_ 121151191 8!

Po=5ia1g7 1511 - 000022

So the total probability of observmg data this extreme or more extreme by
chance alone is

p=pi+pe=0.00535+ 0.00022
= 0.00557
Since p =0.006 < p = 0.025, the nuil hypothesis is rejected, and the

conclusion is that the Embers’ cross-cultural test supports an association
between residence and recent depopulation.




11.11 GENERAL SIZE CONSIDERATIONS

The following size recommendations can serve as guidelines for.applying the
chl-square and Fisher's Exact tests {Cochran 1954; Grizzle 1967).

Guideiine 1. Two-by-two contingency tables.

A. Use Fisher's Exact Test if
1. n is less than 20; or
9. n is between 20 and 40, and the smallest E, is less than 5.

. Use the chi-square test if
1. n is greater than 40; or
2. 1 is between 20 and 40, and the smallest E; is greater than 5.
3. Yates' Correction for Continuity is necessary only when the
smallest £ is less than 10.

Guideline IIl. R x C contingency tables {where R>2 or C>2). Chi-square is
permissible if
A. All £ are greater than 5; or
B. No more than about 20 percent of the cells have £ less than 5
and no E; is less than 1; or :
C. More than about 20 percent of the cells have E; less than 5 an
no £ is less than 2.

11.12 THE McNEMAR TEST FOR CORRELATED
PROPORTIONS

The chi-square and Fisher's Exact tests are the most common methods for
examining relationships between two variables in the 2 X 2 format. Both tests
assume two conditions: (1) the sample has been randomly selected from its
population, and (2) the two samples are mutually independent. All previous 2 X é
tables have implicitly conformed to these assumptions. The null hypothesis has
been that all cell frequencies should be in relative proportion to their corres-
ponding row and column totals. Any disproportionate cel will inflate the sample
statistic and hence cast doubt upon H.. _

But suppose that the second assumption has been violated and that the
‘samples lack mutual independence. Are the chi-square and Fisher's Exact tests
“then invalid? Quite simply: yes, they are. Because these standard contingency.
tasts cannot be used when the variables are mutually dependent, an alternative
-Is recommended. : -
" Whatspecificaily is meantby mutual independence within a contingency table?
‘Two varlables are dependent when the frequencies of one variable fogically.
! Eﬁﬂﬂéﬂﬁe the values of the second variable. A prime example of this relationship
‘i the familiar "'before-after” research design of psychological or educationa
“exparimants, Suppose that 150 college sophomores are questioned whether of
R think marijuana should be tegalized. Each subject is then shown &

racorded television segment in which a number of heroin addicts testify that.
marijuana led them directly into abuse of hard drugs. Graphic examples of
suleides “under the influence of marijuana” are presented along with clinical
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discussions of the links between marijuana usage; ung -cancer, and ¢hromo-
some damage. These same 150 subjects are then questiamd'again' Do you
now believe that marijuana should be legalized?” :

Some students who formerly favored legalization will probably: whange their
attitudes because of the potential hazards. But others who were originally
opposed to legalization will undoubtedly resent the biased talevision presenta-
tion as “brainwashing” and will favor legalization largely as a mgans of protest,
The results from the experiment can be arrayed in the famillar 2% 2 farmat.

After Television Segment

_ Favor Oppose |
Before TV Segment Legalization Legalization

Favor legalization a b
Oppose legalization c d

{s there a significant change in attitude due to the television program?
Meaningless chi-square or Fisher's Exact statistics could easily be computed
from these data. This experiment violates the assumption of mutual indepen-
dance between samples, and hence both tests are invalid. The same subjects
have been asked the same questions, so the “pefore’ variable influences the
"after” variable. '
The McNemar Test for Corrélated Proportions is specifically designed to
agsess the significance of change between dependent variables. The chi-square
rost is sensitive to changes in all four celfs; any major deviation from expécta-
tion inflates chi-square. But in the above cases, interest is only in those cells
denoting change, that is, the number of students who .have changed their
attitudes toward legalization of marijuana. Cells a and d represent contmuny.
those individuals who declined to aiter their opinions regarding legalization.
Only cells b and ¢ represent changes in attitude, and the McNemar test
provides a statistical method for assessing the relative significance of change.
The null hypothesis of no change states simply that the frequencies of cells b
and ¢ should be roughly similar. The larger the discrepancy between cells b and
¢ the less tenable is the null hypothesis. As long as the sample remains
relatively large, any particular probability can be approximated by the chi-
square distribution where :
2 _(b—c|=1Y

s (11.8)

with a single degree of freedom.®

Consider an archaeological application of the McNemar statistic. Three
archaeologists—Tom, Dick, and Harriet— have convened to discuss the prehis-
toric cultural sequence of the Yahoo Basin. A total of 75 archaeclogical sites are
known from this area, and the session begins with Dick and Harriet comparing
their analyses of these sites. Harriet classifies 50 of the 75 sites into the Early

“Note that although the chi-square distribution is used to find the probability of the MeMamat
atalistic, the assumptions and methods of the McNemar test are quite distinct fromthosa ot the i - 2y’

tos|
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Period, and the remaining 25 sites inio the Late Pericd; Dick classifies these

.same sites ag 47 Early and 28 Late. Because of this surprising amount of
digsagreement, they tabulate their findings for site-by-site comparisons. Of the 50
sitea that Harriet has called Early, Dick has agreed with only 40, calling the
remaining 10 sites Late. Harriet has classified 25 sites Late, while Dick has listed
28 Late sites. In other words, Harriet and Dick have agreed on only 40 Early sites
and 18 Late sites, and they have disagreed on the temporal affinity of the
ramaining 17 sites.

Harriet
Dick Early Late Total
Early 40 7 47
Late 10 i8 28
Total 50 25 75

Most archaeologists realize how much subjectivity is Invoived in such cases,
and error will never be eliminated. Random errors are of less concern, since
they tend to cancel one another in the long run, but systematic errors of
classification are more serious and can disrupt entire cultural sequences.
Harriet and Dick disagree on 17 sites. How much disagreement is due to random
errors of classification and how much to a systematic bias resulting from
differing conceptions of Early and Late phases?

The McNemar test is useful here because only cells b and ¢ of the
contingency table are invoived; these are the cells of disagreement. Clearly, the
typology lacks precision, but do systematic errors appear? The McNemar

_ statistic is computed from Formuia (11.8),

— _ 2
(7=10] 1) _ 005

10+7

This small value of chi-square (with a single degree of freedom) does not
approach the significant values in Table A.5, so the null hypothesis is not in
danger. Harriet and Dick do not appear to be classifying the sites in significantly
different ways. Thelr differences are due simply to random errors, and future
research will surely reduce this random component.

The situation is somewhat different when Harriet's typology is compared with
Tom's list. Tom and Harriet likewise disagree on the temporal placement of 17
gites. The percentage disagreement is exactly the same as that between Dick
and Harriet {23%). But take a closer look at the nature of the disagreement.

x*=

Harriet
Tom Early Late Total
Early 36 3 39
Late 14 22 36
Total 50 25 75
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Harriet has classified only three of Tom’s Late sites as Early, and Tom has
classified 14 of Harriet’s Early sites as Late. The McNemar comparison is as
foliows:

o (14=31-1F
=y =588

This value of chi-square is significant past the 0.06 level,

The peculiar situation illustrated above needs to be considered in a blt more
detail because an important concept is at stake. Two comparisons were made :
based upon a single sample of 75 sites. Harriet's ¢lassifications agreed with
Dick’s by 58/75=77 percent, and Harriet's also agreed with Tom's by. 77
percent. The two situations were identical in overall agresment. The character
-of disagreement is quite different. Harrlet and Dick essentlally split their -
differences in half. They disagreed randomly. The McNemar test avaluated the
cell frequencies for b and ¢ (7 and 10, respectively) and concludad that these
proportions could readily be due to random error, Harrlet and Tom likewise
disagreed on 17 of the sites, but the proportion of sases botwaeen the critical
cells seems to be out of line, with b =3 and ¢ = 14. The MoNemar test
concluded that this disproportionate cutcome will octur by chance in fewer
than 5 in 100 random samples. Some systematic source 8f arror is probably at
work here: Either Tom consistently calls Harriet's Early sites na Late, or Harriet
consistently. classifies Tom's Late sites Early. The differance nannot be. distm-
guished on these data alone. Although both comparisons invoived an arror of 23
percent, the errors between Harriet's and Tom's typology seem more grievous
because a systematic hias results.

® Statistical thinking will one day be as necessary for efficient
citizenship as the ability to read and write.—-H. G. Wells

Example 11.9

A matrilocal residence system is one in which a newly married couple
takes up residence in the village of the bride's mother. Anthropologists
‘have attempted to explain the origin of specific matriocal systems for well
over a decade, but few have devised a set of specific causes which can
explain all matrilocal systems. A recent study by Divale (1974) attempts
just such a universal explanation.

Divale’s argument goes as follows: When a population migrates into an
already inhabited region, warfare usually results, and the society best
equipped to fight such battles will have an adaptive advantage. Matrilocal
residence selects for more efficient warfare because the agnatically
related males are scatiered over several communities; patritocal systems
do not fare so well because the females rather than the male warriors are
scattered. Thus, matrilocality is caused by migration and is an adaptation
to the resulting disequilibrium. Does the following cross-cultural sample
support Divale’s contention that recently migrated societies tend to
change to matrilineality?




After Migration

Before Migration Matrilocal Patrilocal Total

Matrilocal 39 12 51
Patrilocal 35 32 67

Total 74 44 118

The sample consists of 118 societies which are known to have recently
migrated. The post-marital residential pattern remains unchanged in 71 of
these societies, while 47 societies have changed their patterns (12 from
matrifocal to patrilocal and 35 in the other direction).

This contingency table cannot be tested using the chi-square statistic
because the same variable (residence} has been measured twice on each
society. McNemar's test is the appropriate statistic to test the significance
of the residential change:

. _(35—12|-1)?
X 35+12

=10.298

with a single degree of freedom. The result is significant beyond the 0.01
level. Chance phenomena do not seem sufficient to explain this change,
and the data from these 118 societies do not conflict with Divale’s
hypothesis of matrilocal residence patterns.

SUGGESTIONS FOR FURTHER READING

Conover (1971: chapter 4}

Hays (1973: chapter 11)

Morrison and Henkel {1970). A collection documenting abuses of chi-square
and other significance tests in the social sciences.

Siegel (1956: chapters 4, 6, 8)

EXERCISES

" 11.1 The following figures reveal the cross-cultural prevalence of riddles in
137 societies {data from Roberts and Forman 1971):

Level of Political Integration

Autonomous Minimal
Absent Local State State

‘Riddies absent 9 4 16 a1
Piddiss present 0 8 10 23
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(a) Is there a significant difference in riddling behavior between
societies with autonomous local politicat organization and societies
with the state? (Use a chi-gquare statistic.)

(b} Recompute part (&) using the binomial distribution.

Investigators from the Government Hosplital Tel-Hashomer, Israel, con-
ducted a long-range study on colorblindness among Jews and Arabs
fiving in Israel. The following cases of rad-green blindness were noted
in a large sample of informants living in central larael (data from Adam,
Doron, and Modan 1267):

Normal Red/Groan
Vislon Blindnass

Arabs 638 . 78
Jews 1085 43

Does this study indicate a significant diﬂerenee in the frequency of

colorblindness?

In a study on the cultural patterning of sexual beliets and behavior,

Minturn et al. (1969) generated a cross-cuitural sample of 136 societies

using the Human Relations Area File.

(a) Do the following data, extracted from their survey, support the
hypothesis that divorce is more difticult in societias in which the
nuclear family is the primary social unit?

Ease of Divorce

Family Organization Difficult Easy

Extended
Nuclear

(b} Why did you select the coefficient you did?

The Graduate Division of the University of Cailfornia, Berkeley, proces-
sed a total of 12,763 applications for graduate study for the fall of 1973
{(data from Bickel, Hammel, and Q'Connell 1975: table 1).

Outcome

Applicants Admit Deny

Men 3738 4704
Women 1494 2827
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(a) Do these dafa indicate that sexual bias is operative in the admission
process?
{b) What isthe danger of applying the chi-square statistic in this case?
#1156 Some social anthropologists have hypothesized a functional relation
ship between Hawaiian kinship terminology and prohibition of cross
cousin marriage. Do these data from the Ethnographic Atlas suppor
such a hypothesis {data from Goody 1970: table 6)7

Prohibition on Cross-Cousin Marriage

Hawaiian Kin Terms Present _Absent
Present 200 39
Absent 219 206

11.6 The foliowing data characterize phenotypic frequencies of the ABO
blood system among three Macro-Maya speaking societies in southern
Mexico (data from‘Cordova, Lisker, and Loria 1967: 58)7

ABQ System Phenotype
A B 0 AB

Chol 16 1 135 0
Chontol 10 3 88 0
Totonac 9 0 70 0

(a) Is there a significant difference in ABO phenotypes among the three
groups?
(b) In the above calculation, which phenotypes (if any) must be ex-
cluded from the chi-square calcuiation? Why?
11.7 The acculturational study of rural Buganda discussed earlier (Chapter
2) generated the following data {Robbins and Pollnac 1969: table 8}

Beverage Choice

Age Traditional Mixed Modern
17-40 . 13 16 11
40+ 29 7 2

Do these data support the notion that the younger members of
Buganda society prefer nontraditional alcoholic beverages?

11,8 Based upon a sample from the Ethnographic Atlas, Ember and Embrer
(1971) determined the following relationship between warfare and
regidence: .

i




C
\'\

Nonparametric Statisticg: Nominal Scales' 305

Pattern of Residence

““-""‘_ﬂ-h—n_,
Wartare Matrilocal Patriioca)

External Caltinago
Cherokee
Creek
Kaska
Navaho
Miskito

Internal Mataco Azandy -
" Yao Gandg

Jivarg
Kapauky
Murngin
Namga
Nootka
Nuer
Tallensi
Tiv

ts there a significant reiationship between Warfare and residence?

As part of a study on blood-group frequencies in the higher primates, a
team of scientists tested the chimpanzees at the Edinburgh Zoo for the
ability to taste PTC. A total of 27 chimps were tested (data from Fisher,
Ford, and Huxley 1939).

Males Femajeg

Taster 11 g
Nontaster 3 4

{a) Do the male chimps seem to have a greater ability to taste PTC than
the females? -
{b) Why is the chi-square statistic an invalig Measure in this case?

The following mortality figures come from three North American
archaeological sites. The archaic Population jg from indian Knoll,
Kentucky; the Hopewellian series is from the pete Klunk Mounds in
southwestern lllinois; and the Middle Mississippian sample is from the
Dickson Mounds, also in Hlinois (data fram Blakely 1971: 1able 3.




Age at Death

0-19 20-39 40+

Archaic 60 8 23
Hopewell 106 80 108
Middle

Mississippian 215 150 114

{a) !s the mortality rate significantly different between the archaic and
Hopewellian samples?

(b) s the age at death different between Hopewell and Middle Mlssls
sippian samples?

{c} Are the three samples significantly different from one another?

(d} What levels of measurement are involved?
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