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@ it is better to be ignorant than to know what ain't so.—S. Ervin f=7
i

12.1 RANK-ORDER STATISTICS T

Chapter 11 considered some statistics relevant to nominal scale data. These ]

statistics were called nonparametric because no minimal level of measurement ik h;
was stipulated—and nominal is as low as one can go—or because no assump-
tions were necessary regarding the population distribution. This chapter pres-
ents further nonparametric methods by considering statistics appropriate to
the ordinal level of measurement. These techniques are sometimes called A
rank-order statistics because variates are usually arrayed along an ordered i
scale rather than being actually measured. 3"

i i,

12.2 THE WILCOXON TWO-SAMPLE TEST

The Wilcoxon test examines two samples to see whether their respective
populations have different central locations. The t-test did this by looking at the
sample means. After considering the variances, the t-test assessed whether the
two samples represented the ‘‘same’’ population mean, or ‘‘different”’ popula-
tion means, given alpha. The Wilcoxon test also serves this function, but on a
different sort of data. The t-test required an interval scale of measurement, while
the Wilcoxon test is designed for ordinal-level data. As discussed in Chapter 2,
ordinal-level samples have no "measurements’” in the strict sense. Because
variates are simply placed into a relevant order (or ranking), ordinal samples
cannot be characterized by means. The median must suffice for ordinal variates.
Thus, the t-test examines for a difference between population means, and the
Wilcoxon test looks for different population medians.
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Suppose that two prehistoric cemeteries were excavated. The stature of each
individual could be estimated by measuring the relevant bones, and a f-tes!
could tell whether the first population was taller than the second. But suppose
that the cemeteries had been disturbed by pothunters, and too few bones were
available for the physical anthropologist to make reliable stature ‘estimates. (n
this case, the burials could be ordered only in a sequence from relatively short
to relatively tall, based upon relative robusticity of the bones. The t-test would
be useless here because no sample means can be computed. The best we could
do, given the ranked nature of the skeletal information, would be to find the
median (or halfway point) in each skeletal series. The Wilcoxon test could then
be used to look for stature differences between the cemeteries.

The initial step in all ordinal testing is to place the variates in a numbered
sequence (called a rank order). The skeletons from cemetery A would be lined
up by increasing stature next to those from cemetery B. Find the shortes!
skeleton in either collection, and give this specimen the rank 1. The second
shortest gets a 2 and so forth until all skeletons have been numbered. Now sum
the ranks for the first cemetery and call this sum W,. The sum of the rankings for
the second sample is called W,. The Wilcoxon test provides a method to tell
whether the first samples tend to rank higher overall than the second sample.
This would mean that the individuals in the first cemetery tended to be taller
The null hypothesis of the Wilcoxon test holds that W, should be greater than
W. only about half the time (assuming the samples to have the same number of
variates). If the sum of ranks for the two samples is roughly the same, there is no
reason to doubt H.. That is, there is no reason to suspect a difference between
the medians. But the larger the difference between W, and W,, the less likely it
becomes that the samples will be random samples from populations with
identical medians. The directional alternative hypothesis suggests either that
W, in fact exceeds W,, or perhaps vice versa. The Wilcoxon statistic enables us
to see whether significant differences exist between W, and W..

Another example will illustrate these computations. Anthropologists often
assume that there is some advantage for hunting societies to keep the related
males within the same residential group throughout their fife. Not only do
hunters cooperate and share more readily with kinsmen, but they are also more
effective when hunting in familiar home territories. So, it is hypothesized that
hunting groups should tend to be patrilocal, and this hypothesis can be tested
against a random sample of North American societies selected from the
Ethnographic Atlas. Societies in the Atlas can be characterized as either
patrilocal or matrilocal, and can also be rated on the relative importance of
hunting in the overall economy. If the above hypothesis is correct, then
patrilocal societies should tend to be more dependent upon hunting than are
matrilocal groups. The following eight societies were randomly selected:

Atlas Code  Relative Dependence upon Hunting, %

Matrilocal
Huron 1 6-15
S. Ute 56-65
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Atlas Code  Relative Dependence upon Hunting, %

Matrilocal (contd)

W. Apache 4 36-45

Antarianunts 3 26-35
Patrilocal

Slave 5 46-55

Gros Ventre 8 76-85

Santee 7 66-75

Kiowa 9 86-~100

Had the relative importance of hunting been expressed in precise percen-
tages, conventional parametric methods could have been used to test for a
significant difference. But since the relative importance of hunting is estimated
in only rather gross intervals, the exact methods of the t-test are inapplicable. To
repeat, the t-test requires at least an interval scale, but these data are only
ordinal.

These subsistence data can easily be rank-ordered according to the relative
dependence upon hunting and the numerical rankings assigned to each society.
The matrilocal societies and their associated ranks have been underlined.

Scale of hunting importance, %.

Slight Dependence «——— ———————— Strong Dependence
Huron  Antarianunts W.Apache Slave S.Ute Santee GrosVentre Kiowa
0-5 26-35 36-45 46-55 56-65 66-75 76-85 86-100
(1 (2) (3) (4) (5) (6) (7) (8)

The sum of the ranks for the matrilocal societies is
W,=1+2+3+5=11
The sum of the ranks for the patrilocal societies is
W,=4+86+7+8=25
The grand total for all ranks is
1+2+3+4+5+6+7+8=W,+ W.,=236

Note that the sum W,+ W. is a constant for all situations containing exactly
eight outcomes, regardless of the specifics of the samples.

The research hypothesis suggests that the mairilocal societies (sample 1)
should have had less dependence upon hunting than had the patrilocal sample.
Thus, the sum of ranks for the patrilocal societies is greater than the sum of
ranks for the matrilocal societies: W.> W,. Is the result (W,—W,)=14 a
sufficient deviation for the result to be considered statistically significant?

In probabilistic terms, there are eight independent trials in this experiment, so
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the probability must be found that a sample of n, = 4 such outcomes will have
ranks which sum to less than or equal to the observed value of W, = 11, That is
the situation requires the number of combinations of eight items taken four at a
time:

Cs. 70

!
T 4t4
By trial and error it is found that only two paossible ways exist to obtain a sum of
ranks less than or equal to W, =11:

Wi=1+2+3+4=10
Wo=1+2+3+5=11

There are no other possibilities which sum to 11 or less. Thus the total
probability of obtaining W, =11 if H, is true is

=2
P =70

The statistical hypotheses were one-tailed, so the results are significant beyond
a =0.05, and H, is rejected. This sample is thus consistent with the notion that
hunting societies in North America tend to be patrilocal.

To clarify just how the Wilcoxon test is used for statistical inference, this
example can be recast into the six steps of hypothesis testing.

=0.0286

Step |. Statistical hypotheses: The research hypotheses are as follows:

H.: Postmarital residence is independent of dependence upon hunting (or
matrilocal societies tend to hunt more than patrilocal societies).
H.: Patrilocal societies tend to hunt more than matrilocal societies.

These statements now must be translated into specific statistical hypotheses. If
W, is the sum of ranks for matrilocal societies,

Ho: p(W.=Wy)=1/2
Hi: p(W,= W) <1/2

The two propositions actually reflect the relationships between the respective
population medians.

Step |l. Statistical model: The distribution of the Wilcoxon statistic provides s
statistical model against which to judge the specific sample values. The
Wilcoxon two-sample test assumes (1) both samples are randomly selected, (2}
the samples are independent, (3) at least ordinal measurement, and (4) both
samples are variates of continuous random variables (see Section 12.7).

Step lil. Significance level: Let a = 0.05 for a directional test.
Step IV. Region of rejection: The Wilcoxon test is called an exact test becauss

the result is a specific point rather than an area. The ‘‘region of rejection’” fo
this case is defined directly from the level of significance. Any probability for the

-
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TABLE 12.1 Maximum cranial length measurements (in
millimeters) from two series of fossil men
(data from Coon 1971a: table 37).

Homo erectus Neanderthals and Skhof
Pithecanthropus 4 1997 La Ferrassie 209
Pithecanthropus 1 1837 Neanderthal 199
Solo 11 200 Spy 1 201
Sinanthropus 3 (*) 188 Circeo 1 204
Sinanthropus 10 199 Le Moustier Y 196
Sinanthropus 12 185.5 Tabun 5 206
Saldanha 200 Skhal 5 192
Broken Hill 208 Skhal 9 213

(*) Young, subadult; all others are adult.

length measurements which would seem to indicate that Homo erectus had a
shorter head than Neanderthal. But is this rather small difference in head length
statistically significant?

Upon initial inspection of the data, one might be tempted to use a simple
t-test, but a closer look indicates that the measurements lack the accuracy
implied by the t-test. The measurements for both Pithecanthropus skulls, for
instance, are little more than guesses, while Sinanthropus 12 was accurately
measured to 0.1 mm. In addition, the Sinanthropus 3 skull is not a mature
individual, so the cranial length is probably somewhat less than that of the adult
form. When dealing with specimens as rare as complete fossil crania, one
simply cannot control the errors of measurement with much precision; often,
inconsistent measurements such as these must suffice. To avoid implying
spurious accuracy, the length measurements in Table 12.1 have been reduced
to ordinal relationships; the relative rank ordering is thus maintained without
implying true interval accuracy.

Considering the Homo erectus specimens as sample 1, the following rank
ordering is achieved (sample 1 underlined).

Original Data  Rank Number  Original Data Rank Number

183 % 200 95
1855 z 200 9.5
188 3 201 1
192 4 204 12
196 5 206 13
199 7 208 4
199 7 209 15
199 7 213 16

Note that in two cases (199 and 200 mm), the variates were tied. The rank
number is assigned in such instances by using the average ranking for that

it gt
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score; it is thus necessary to sum the tied ranks and divide by the number of tic«
involved.

Rankiss=22T*8_ 5
3
Rankm = 9 +210 =95

The sum of the ranks is found to be
Wi=1+2+3+7+7+95+95+14=53
W.:=4+5+7+11+12+14+15+16=84

The value of U is found in the usual manner:
U=53-28(8+1)=17

Table A.6 indicates that Ciss = 12,870 and the corresponding value of U =17 Is
879, so the two-tailed probability in this case is

_ 2(879)
12,870

Because of the relatively large probability figure, we conclude that this sample
provides insufficient evidence to reject H,, assuming «=<0.1366. We can
demonstrate no significant difference between cranial lengths of Homo erectus
and Neanderthal.

This section has tacitly introduced a slightly different mode of statistical
inference. Because the probability values computed by the Wilcoxon test are
exact, they can be directly used for statistical inference without bothering with a
region of rejection. Thus, the value of p = 0.1366 will be insufficient to reject H,
for any alpha level less than or equal to 0.1366. This interval includes most
common significance levels (that is, 0.05, 0.01, 0.001), and we can safely assuma
that almost all investigators would retain H,. The real advantage of exact tests is
that the alpha level need not be specified. A current trend in social science
applications of statistics is to forego the actual hypothesis-testing procedure
and simply state exact levels of probability. This leaves the decision ‘reject or
not reject” to the reader. This trend is perfectly healthy, as long as we
understand the procedures of statistical inference when we finally do wish to
make a decision. Sometimes specifying the six steps helps insure that the
statistical model and its assumptions have actually been met.

=0.1366

Example 12.2

The Midland site in west Texas yielded one of the oldest human skulls in
the Americas. The artifact inventory included some rather conventional
Folsom projectile points and also an artifact called a Midland point. The
Midland points are identical in every way to the Folsom finds except that
Midland points lack the diagnostic channel flute. Since their discovery,
Midland points have been found in a number of localities in the American
Southwest, but archaeologists are still hard-pressed to explain the curious

absence of the channel flute. Some suggest that the Midland points were
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originally manufactured on a very thin flake, and therefore the blank was
too thin to channel. This argument makes a certain amount of sense if the
channel flake was executed to thin the artifact; then artifacts already quite
thin would not need to be fluted. The measurements below are for artifacts
found at the original Midland site.

Are the Folsom points significantly thicker than the Midland points?

For demonstration purposes, these thickness measurements will be
reduced to rank orderings, and the Wilcoxon two-sample test will be used
to compare the two samples statistically.

Thickness measurements for artitacts from the Midland site
(data from Wendorf, Krieger, Albritton and Stewart 1955).

Folsom » Midiand (unfluted Folsom)
i Thickness, Thickness,
Catalog No. inches Catalog No. inches
16 0.14 19 0.13
17 Q.08 24 0.12
18 0.14 25 0.11
& 55 0.19 27 0.19
n 74 0.19 29 0.10
s 30 0.09
31 0.11
b 32 0.10
e
_'a The variates must first be rank-ordered:
st Folsom .08 14 14 19 .19
e Midland 09 .10 40 A1 A1 12 13 19
is Ranking 1 2 35 35 55 55 7 8 95 95 12 12 12
se
re The sum of ranks can be computed next:
;’; m=5 W,=1+95+9.5+12+12=44
to n,=8 W,=2+35+35+55+55+7+8+12=47
he The Wilcoxon statistic can now be computed:
— u=44—552+”=44—15=29
[ 131 13-¥2-11-19-9
¥ Cos=g51g1=" g.4-3.2 120
[ This value of U exceeds the tabled frequencies, so H, is not rejected. We
H : can conclude that these data do not support the suggestion that Folsom
t B points tend to be thicker than Midland points.
, § A two-sample t-test of these same data produces a test statistic of
1 ] t = 1.465 with 11 degrees of freedom. This value of t is not significant at
5 : even the «=0.1 level. In general, the f-test and the Wilcoxon two-sample
2 : test will produce almost identical results.
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12.2.2 Normal Approximation to the Wilcoxon Two-Sample Test

As long as neither n, nor n. exceeds 8, Table A.6 can be used to find the
appropriate probability values associated with the Wilcoxon statistic. But ordinal
scales are so widespread in the social sciences that problems commonly
arise which are appropriate to the Wilcoxon test, but which exceed the tabled
values of n, and n.. As an alternative to computing additional—and more
cumbersome—probability tables to accommodate these larger samples, it has
been shown that as long as the samples are large enough, the distribution of W,
approaches a normal distribution with the following parameters':

_mn+1)
Mw = 2

g /L*L%Lﬂ (12.2)

where n = n,+ n.. These formulas assume that no ties are present.

The following example approximates the Wilcoxon test through use of the
normal distribution. Phyllis Jay Dolhinow made extensive observations on the
dominance behavior of female langurs in Northern India. Dolhinow hypothes-
ized that social position is largely a function of the individual female's status as
a mother and also her phase in the reproductive cycle (Dolhinow 1972: 220). As
field studies progressed, individual females became identifiable on sight, and
Dolhinow was able to establish the female dominance hierarchy for the Kaukori
langur troop (see Table 12.2). Assuming that all females suspected of pregnancy
were in fact pregnant, do these data support the hypothesis that reproductive
status is associated with position in the dominance hierarchy?

This comparison involves two groups, pregnant and not pregnant langurs,
each of which has been ranked for dominance; hence, the Wilcoxon test is
clearly in order. The rank ordering can be recast.

Original Data Rank Ordering Original Data Rank Ordering

-
(=]

— s
P -

16
17
18
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®» O DO Z|Zr x|
& =lal

The ranks of the pregnant females have been underlined. In this case, n, =7
and n, =11, values which are too large for Table A.6. The normal approximation
to the Wilcoxon statistic will be used to derive a probability value for this event.

'For verification and discussion of these Wilcoxon parameters, see Wilcoxon (1947) and Alder and Hoessler
(1972: 179).
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TABLE 12.2 Female dominance hierarchy of the Kaukori langur troop
(modified slightly from Dolhinow 1972: tables 5-7). Individual
“A” is most dominant, and ““S” is most dominated.

e. Reproductive Reproductive

; Female Status Female Status

d A Not pregnant J Pregnant

e B Pregnant K Not pregnant

15 c Pregnant L Pregnant

vy D Not pregnant M Pregnant
E Pregnant N Not pregnant
F Not pregnant 0 Not pregnant
G Pregnant P Not pregnant
H Not pregnant Q Not pregnant
| Not pregnant S Not pregnant

2) 1

b

. ! The sum of the ranks in the first sample is

the

the Wy=2+3+5+7+10+12+13=52

o Because the sample size is relatively large, W, should be distributed rotghly in

;’; . normal fashion, with parameters given by Expression (12.2).

md_ | uw*7!18+1l-6&5

<ori 2

ncy

tive ow= ) WD 4104

12
urs,

; The question now concerns the probability of obtaining results as deviant as
itis W, = 52, where p, = 665 and o, = 11.04. This is accomplished by using the
normal approximation:
_52-665 _
11.04

which corresponds to an area of 0.0951. The two-tailed probability for the case
of female langur domination is thus

p = 2(0.5000 — 0.4049) = 0.1902

H, must be retained for all « < 2(0.0951) = 0.1902

The research conclusion is that this sample indicates no association between
reproductive status and an individual's position in the female dominance
hierarchy.

The normal approximation for the Wilcoxon test also holds when ties are

-1.3

q‘:.-! present, but the following corrected formula must be used to compute the
nation standard deviation:
svent.

(12.3)

Roessler

i _ [ mnan(n* — 1) - £T)
' o \/ 12n(n - 1)
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where n=n,+n,, and T, = (t, = 1)t,(t, + 1) in which t = number of ties at rank /

This computation is illustrated in Example 12.4.

Example 12.3

In a classic study of the ecology of the American Southwest, Julian Steward
(1937) demonstrated how ethnographic and archaeological data could
jointly be focussed upon problems of general anthropological interest.
Steward felt that the matrilineal clans of the Southwest could better be
expressed as an adjustment to ecological pressures than through mere
diffusion from neighboring areas. Steward argued that localized exogam-
ous lineages had once been crowded during prehistoric times into large
multilineage communities, probably due to increased population density.
The unilateral groups devised ceremonies, totems, and other cultural
devices which fostered group solidarity, thereby maintaining corporate
identities. In time, the lineages thus evolved into clans. To support this
thesis that small villages had once aggregated into large communities,
Steward cited archaeological data showing that the number of habitation
rooms increased through time in relation to ceremonial kivas. The data for
the last two periods of Southwestern archaeology are presented below.

Do these archaeological data support Steward's hypothesis of a signifi-
cant increase in the room:kiva ratio between Pueblo IV period (A.D.
1300~-1700) and historic times?

Pueblo village growth (data from Steward 1955: 165-167).

Period Site House:Kiva Ratio
Pueblo IV Tshirege, Rio Grande 60:1
PIV Tsankawi, Rio Grande 30:1
PIV Otowi, Rio Grande 90:1(7?)
PIv Yapashi, Rio Grande 92:1(?)
PIV Kotyiti, Rio Grande 240:1(7)
Pueblo V Oraibi, Hopi 354:1
PV Walpi, Hopi 34.2:1
PV Sichumovi, Hopi 36:1
PV Shipaulovi, Hopi 33.3:1
PV Mishongnovi, Hopi 31.8:1
PV Hano, Hopi 52.5:1
PV Zuni 95.4:1
PV Zuni 289.8:1

Although the data tabulated are expressed as ratios, the actual measure-
ments are quite inconsistent: The Pueblo V figures are derived from
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known family counts, while the Pueblo IV ratios consist of counts from
archaeological excavations. To avoid misleading feelings of concreteness,
the ratios have been reduced into rank orderings:

Original Data Rank Ordering Original Data Rank Ordering

30 .4 0 8
3.8 2 90 9
33.3 3 92 10
34.2 4 95.4 11
35.4 5 240 12
36.0 6 289.8 13
52.5 7

The Pueblo IV data have been underlined, so n, =5 and n, = 8. The sum of
ranks is found to be

W, =1+8+9+10+12=40
W;=2+3+4+5+6+7+11+13=51

Because n, and n are relatively small, Table A.6 could be consulted for
the associated probability level. Cis; is found to be 1287, but there is no
probability value listed for U = 25. This is because the probability is too
large to bother listing. Nevertheless, let us find the exact probability by
using the normal approximation to the Wilcoxon statistic:

~5014) _
Mw = D) =35

e \/5;3;(14)2 663

12
The standardized normal deviate is found to be

_40-35_
z=22220.73

The probability for a one-tailed alternative is
p=0.5000-0.2673=0.2327

The result is not significant and H, is not rejected for «<0.2327. These
data fail to lend support to the ecological hypothesis advocated by
Steward. (In all fairness to Steward, however, he was interested primarily
in a possible increase before Pueblo IV times, which turns out to be highly
significant.)
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Example 12.4

In their investigation of the relationship between child training practices
and subsistence economy, Barry, Child, and Bacon (1959) hypothesized
that child rearing among pastoral societies—in which food is extensively
accumulated and stored—tends to value personality traits such as com-
pliance and conservation. On the other extreme, societies with relatively
little accumulation of food resources, particularly hunters and fishermen,
were expected to reward individualism, assertiveness, and a venturesome
attitude in youth. The authors selected a large cross-cultural sample to
test their hypothesis, and the societies were scored on the relevant
personality traits. Positive scores were awarded to groups with a relatively
high degree of compliance, while assertion was rated negatively.

level?

rank ordering appears as follows:

Do these cross-cultural findings support their hypothesis at the 0.01

Because of the relatively large size of the samples, it becomes necessary
to apply the normal approximation to the Wilcoxon two-sample test. The

Animal Husbandry

Hunting, Fishing

+13.5 Aymara + 4 Teton

+13.5 Tepoztian + 1 Tahgan

+11.6 Lepcha + 0.5 Hupa

+ 8.5 Swazi 0 Chiricahua

+ 8.5 Tswana 0 Murngin

+ 8 Nyakyusa g Paiute

+ 8 Sotho - 2 Arapaho

+ 7 Nuer - 2 Kwakiut!

+ 7 Tallensi — 2.5 Cheyenne

+ 6.5 Lovedu - 25 Kaska

+ 6.5 Mbundu — 2.5 Klamath

+ 6.5 Venda — 25 Ojibwa

+ 6 Kikuyu -3 Ona

+ 6 Zulu - 4 Aleut

+ 45 Pondo - 6.5 Jicarilla

+ 4 Chagga -10 Western Apache

Fo o Ganda -10.5  Siriono

+ 2.5 Chamorro -1 West Greenland Eskimo

+ 25 Masai -12 Aranda

+ 1 Chukchee —12 Comanche
o] Tanala -13.5 Crow

- 25 Thonga —15 Manus

- 3 Araucanian

-3 Balinese
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Original data Ranks Original Data Ranks
=15 1 1 255
—135 2 25 27.5
=12 3.5 2.5 275
-12 35 3 29
5] 5 4 305
-105 6 4 30.5
-10 b 4.5 32
- 65 8 6 34
- 4 92 6 34
-3 i1 6 34
-3 11 6.5 36
= 3 11 6.5 36
- 25 15 6.5 36
- 25 15 7 38.5
- 25 15 7 38.5
~ B 15 8 40.5
— 25 15 8 40.5
- 2 18.5 8.5 425
~ 2 18.5 8.5 42.5

o 215 1.5 44
0 215 13.5 455
o 21.5 13.5 455
0 215

05 24

1 25.5

I

The sum of ranks for the hunting-fishing groups is

W,=1+2+35+35+5+6+7+8+9+11+15+15+15+15+18.5+18.5
+21.5+21.5+215+24+255+305

=297.5
The parameters of the U distribution are
» =22(4g+1)=517

Because of the presence of ties, the standard deviation must be computed
from Formula (12.3). The values of t; are listed below.

Rank No. of Ties (t -t +1)=T,
-12 2 1-2-3 6
- 3 3 2-3-4 24
- 25 5 4-5-6 120
-2 2 1-2-3 6
0 4 3-4-5 60
1 2 1-2-3 6
25 2 1-243 6
4 2 1-2-3 6

e
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Rank No. of Ties (t—Dt(t+1)=T,

6

6.5

7

8

8.5
13.5

PR N WM
i i PN b
MMM WN
wwWwwweEw

The standard deviation is thus

_ [22-24[46- (2116 — 1) - 288]
Sl 1246 - 45

=V2058.9 =45.38

The standardized normal deviate is thus

,.297.6-517 _
45.38

The area associated with this extremely high value of z is too small to even
appear in Table A.3, so the results are judged to be highly significant and
H. is rejected. This sample supports the hypothesis advanced by Barry,
Child, and Bacon: that societies which rely upon stored food will tend to
teach compliance while hunting-fishing groups tend to train their children
toward more assertive behavior.

-4.84

12.3 KOLMOGOROV-SMIRNOV TWO-SAMPLE TEST

Like the Wilcoxon procedure, the Kolmogorov-Smirnov test examines differ-
ences between two samples which have been measured into ordinal categories.
Although the Wilcoxon test is still feasible with tied variates, the corrections for
ties create considerable computational difficulties. The Kolmogorov—Smirnov
test readily facilitates analysis of scales where many ties occur, yet avoids
reducing the data to nominal relations, as does a conventional chi-square
statistic.

The Kolmogorov-Smirnov test involves a rather simple underlying theory
Two ordinal level samples are involved, as in the Wilcoxon test. These two
samples are arranged into a set of cumulative proportions; the procedure hera
is identical to that discussed in Section 3.3.4 when the cumulative curve (or
ogive) was constructed. The null hypothesis of the Kolmogorov-Smirnov test
asserts that the cumulative proportions of the first sample shall be essentially
similar to those of the second sample. The larger the maximum absolute
differences between the cumulative proportions, the less likely becomes H.. The
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distribution of the Kolmogorov-Smirnov statistic, D, is known and the critical
values for the two-tailed Kolmogorov-Smirnov test are listed in Table A.8(b).

One of anthropology’s thorniest problems is how to construct cross-cultural
‘samples, an issue considered in detail in Chapter 15. The problem is whether the
samples should be selected in a purely random fashion, or whether the universe
ould be *'stratified" initially by continent (or culture area) and then sampled
‘within the strata. Simple random sampling has certain statistical virtues, while
careful stratification tends to eliminate the undesirable effecis of cultural
diffusion. Greenbaum (1970) has recently attempted to shed some light on this
problem by statistically comparing samples generated through both methods. A
simple random sample of 69 African societies was first selected from the total
list of African cultures contained in the Ethnographic Atlas (Murdock 1967).
‘Each society was rated on the variable dependence upon agriculture; these
results appear in Table 12.3.

The 863 societies listed in the Atlas were then divided into 412 cuftural
clusters, each of which represents a grouping of highly similar societies which
are known to have had extensive contact. So, each of the societies within a
cluster are quite similar, and each cluster is dissimilar from its neighbors. A
stratified random sample was then constructed of 69 African societies, with only
‘one society permitted from each cluster (no clusters closer than 200 miles were
permitted). This statistical method is designed to screen contamination due to
‘proximity or diffusion, yet still produce a random sample. The stratified sample
‘was also rated in Table 12.3 according to dependence upon agriculture.

Do these samples contain significant differences at the 0.01 level?

A nondirectional Kolmogorov-Smirnov two-sample test is relevant here, thus
preserving the ordinal nature of the variable under study. The critical values of
the two-tailed D statistic are given by Table A.8(b) to be

0.05 level:  1.36 \/”‘“”
ninNs,

0.01 level:  1.63 \/”‘”‘
nin:

TABLE 12.3 Comparison of simple random and stratified random
samples for 69 African societies (data from Green-
baum 1970).

Random Stratified

Dependence upon Sample Sample

Agriculture, % Raw Cum., % Raw Cum., % Difference

0-25 4 0.058 4 0058 00
26-45 1 0217 6 0145  0.072
46-75 0.928 0942 0014
76-100 5 10 4 0.0

69 69
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The cumulative proportions of each measurement class must first be com
puted. In the random sample given in Table 12.3, the proportion of societies
depending less than 25 percent on agriculture is given by 4/69 = 0.058. The
proportion depending less than 45 percent on agriculture is (4+11)/69=0.217
and so forth. Similar computations are performed on the stratified sample, and
the D statistic is simply the maximum deviation between the various pairwise
comparisons. In this case, D = 0.072, the observed difference for the cumulative

proportion for 0-45 percent dependence on agriculture.
The critical value of D at @ = 0.01 is computed from Expression (12.4) to be

_ 69 + 69 =
1.63 \/69{69) 0.277

The observed value of D falls short of the critical value, so the null hypothesis is
not rejected. This experiment fails to show a significant difference between the

two sampling schemes for the African continent.
To summarize the steps in using the Kolmogorov-Smirnov test:

~ -

—r R

Step |. Statistical hypotheses:
H.: There is no difference in dependence on agriculture between random
sampling and the stratified sampling.
H:: There is a difference between the two sampling methods.
In a more rigorous sense, H, holds that D should be about equal to zero, while
H, suggests that D will pe significantly greater than zero.

Step Il. Statistical model: The Kolmogorov-Smirnov model deals only with
cumulative proportions. Under a true H,, the respective unknown cumulative
distributions should be identical, such that D = 0. The test assumes: (1) random
sampling, (2) independent samples, (3) at least ordinal scale measurements, and
(4) underlying continuous distribution of the variables.

Step . Significance level: Let « =0.01 for a two-tailed test.

Step IV. Region of rejection: From Expression (12.4), any observed value of
D =0.277 falls into the critical area of the sampling distribution.

Step V. Calculations and statistical decision: The computed value of D = 0.072
does not exceed the critical value, so the samples appear to favor H, at a = 0.01

Step VI. Nonstatistical decision: The experiment demonstrated no significan
difference between the sampling methods for African societies.

The Kolmagorov-Smirnov test can also be phrased in one-tailed fashion, ana
the significance of such tests is determined by converting the D statistic 10

chi-square, distributed with 2 degrees of freedom,

2 g 2 rhﬂz
x =40 e (12.8)
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The standard chi-square tables can then be used to determine the critical value
of x? for the directional Kolmogorov-Smirnov test. Keep in mind, however,
that although D has been converted to a chi-square distribution, the
Kolmogorov-Smirnov procedure examined a quite different relationship among
variables than did the chi-square test considered in Chapter 11.

An application of the directional version of the Kolmogorov-Smirnoy test
involves cross-cultural comparisons of riddles. Riddling behavior has a rather
uneven distribution throughout the world, and a recent study by Roberts and
Forman (1971) attempted to account for this unusual distribution. Among other
hypotheses considered, Roberts and Forman examined the relationship be-
tween the presence of riddles and the level of political organization. A cross-
cultural survey was conducted in which societies were rated on the
presence/absence of riddling, and political integration was ranked along a
seven-step ordinal scale ranging from “lack of political integration” to the
“state’" level (Table 12.4). Is riddling associated with a high level of political
integration?

The Kolmogorov-Smirnov statistic preserves the ordinal ranking in the level
of political integration, yet handles a case which contains too many ties for the
Wilcoxon test. For a directional application at « = 0.01 (df=2), the critical value
of the chi-square statistic is found to be x°=9.210 (Table A.5).

The two samples are presented in Table 12.4 along with their cumulative
proportions. The maximum deviation between ranks is found in the second
category, in which D = 0.307. The chi-square statistic conversion for this value
is given by Formula (12.5):

» 45(101)

2 __
x = 4(0.307) 757551

=11.730

This observed value of y° exceeds the critical value of 9.210; hence, H. is
rejected. Based upon these data, Roberts and Forman concluded that riddles
appear to be associated with a high level of political organization.

TABLE 12.4 Cross-cultural comparison of riddling and the
level of political integration (data from
Roberts and Forman 1971).

Riddles
Level of Political
Integration + - D
Absent 0 (0.0) 9 (0.089) —0.089
Autonomous 8(0.178) 40 (0.485) —0.307
local
Peace groups 2(0.222) 2 (0.505) —0.283
Dependent 2 (0.267) 3(0.535) -0.268
Minimal state 10 (0.489)- 16 (0.693) ~0.204
Little state 7 (0.644) 6(0.752) ~0.108
State 16(1.0) 25 (1.0) 0.0
45 101

il
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The rationale behind the Kolmogorov-Smirnov statistic depends upon th:
continuous distribution function and is beyond the present scope. The u
terested reader is referred to Conover (1971: chapter 6). I

Example 12.5

When administering final examinations, | have often wondered whether
the better students tend to work more quickly or more slowly than the
poorer students. A good case can be made for either position. | often
advise students to stick with their first hunch; "“You either know it or you
don’t,” | sagely counsel. But | have also seen unprepared students simply
scan an examination, make some cursory guesses, and leave the class-
room prematurely. | once kept track of the order in which students turned
in their exams in an introductory anthropology course. Do the better
students (those receiving A, B, or C grades) work at different rates than the
poorer students?

Good Students Poor Students
Time,
minutes f cum. f cum. D
0-40 h 0.179 3 0.143 0.036
41-45 3 0.286 1] 0.143 0.143
46-50 9 0.607 4 0.333 0.274
51-55 3] 0.821 8 0.714 0.107
56-60 5 1.0 _3 1.0 0.0
8 21

The largest deviation between the cumulative proportions is found
between 46 and 50 minutes, so D = 0.274.
This is a two-tailed test and the 0.01 critical value of D is given by

Expression (12.4):
_ 28+21 _
D =163 28(21) = 0.470
The computed value of D falls short of this critical value, so H, is not
rejected. These data indicate that there is apparently no relationship
between the time a student spends on an exam and the grade received.

12.4 TWO RELATED SAMPLES

Both the Wilcoxon and Kolmogorov-Smirnov two-sample tests tacitly assumw
that each sample is selected independently. That is, the selection for variate / w
the first sample can in no way influence selection of variate i in the second

-
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sample. But many situations occur in which two variates are paired to one
another, as considered earlier in Section 10.8. As long as the paired p-variates
are normally distributed, and both variables are measurable on a metric scale,
then the t-test can be used to test the relationships. But when these conditions
are not fulfilled, the following nonparametric alternatives to the paired t-test can
be helpful.

12.4.1 The Sign Test

The sign test is probably the least complicated member of the nonparametric
family of statistical tests. As the name implies, this test considers only the
direction (that is, the sign) of differences and ignores the magnitude of these
differences. The sign tests involves a “paired’” research design in which the
variates have not been selected independently; rather they are grouped a priori
into pairs by criteria such as before-after, male-female, left-right, first born-
second born, and so forth. Because only the direction of difference is consi-
dered by the sign test, variables can be measured only on an ordinal scale. The
only assumption of the sign test, aside from random selection, is that, regard-
less of the level of measurement, the variable must have an underlying
continuous distribution. Thus, we assume that should ties occur between
scores, these ties will have resulted from errors of measurement rather than
from any inherent equalities within the actual phenomena; this is a commaon
assumption for rank-order statistics. An anthropological example will illustrate
the computations involved in the sign test.

Archaeologists frequently employ some rather loose analogies to the ethno-
graphic record. Some well-documented modern primitives are often considered
to be “'living fossils,” functioning analogies which can be used to infer practices
of prehistoric technology, division of labor, economics, and kinship structures.
But these analogies can never be strictly assumed without first establishing
some firm relationships within the ethnographic record itself. Archaeologists
occasionally assume, for instance, that females are responsible for the pottery
of the archaeological sites. This assumption has led to some rather sophisti-
cated attempts to study ceramic design elements as clues to prehistoric
patterns of postmarital residence, inheritance, and even corporate lineality.

The ubiquity of female potters in the ethnographic record serves as an
ilustration of how the sign test simplifies statistical analysis. A random sample
of 22 societies was selected from the Ethnographic Atlas. The statistical
population was operationally limited to pottery-making societies within aborigi-
nal North America. The Atlas codes this variable into the following categories:

: Females alone perform the activity, male participation being negligible.

: Both sexes participate, but females do appreciably more than males.

. Equal participation by both sexes without marked or reported differentia-
tion in specific tasks.

N: Both sexes participate, but males do appreciably more than females.

M: Males alone perform the activity, female participation being negligible.

mo T

This scale of measurement is ordinal when applied to pottery making, but the

actual degree of participation is clearly a continuous phenomenon which could
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be measured in metric fashion if the data were of high enough quality. Bu!
because we are interested only in whether males or females make the pottery
the data can be reduced into simply dichotomous categories:

+ females participate more than males (categories F + G)
- males participate more than females (categories N + M)

There is no significance to the symbols + and —, for any other set of binar,
symbols would have served equally well. These data are fisted in Table 12"
(note that had the original five-step ranking been retained, one of the two
sample tests would have been appropriate). When cases of equal dependence
(Atlas coding E) occur in the sign test, these cases are dropped, so the origina
sample size has been reduced from 22 to only 20 societies.

The results of the survey indicate that 16 of the 20 societies have femals
potters. We wish now to determine the probability that such extreme results
could be due to mere chance association. If these results were to prove
statistically significant, then the ethnographic analogy might well hold for
archaeological cases as well. Alternatively, one could argue that the fow
societies with male potters represents too large a deviation from expectation
This phrasing should strike a familiar bell, since this precise situation was
discussed earlier in connection with the binomial theorem (Chapter 6). In fact
the sign test is no more than a nonparametric application of the binomisl
theorem. The sign test involves dichotomous relationships, so it is clear tha
the arithmetic mean is not a suitable measure of central tendency. The aull
hypothesis holds that if the two categories are independent, then roughly half of
the signs should be minus and half should be plus. Female potters have been
designated as plus, so a prevalence of female potters should result in a positive
value of the median. This proposition could be tested using the norma
approximation to the binomial distribution, although n = 20 makes the approxs
mation somewhat questionable. Operating at a significance level of 0.01, thae
region of rejection in this sign test becomes that area under the normal curve
which represents the extreme cases of the plus sign. Thus, the region of
rejection is set at p =0.01.

TABLE 12.5 Twenty randomly selected North American
societies. A plus sign denotes female potters
(data from Ethnographic Atlas, Murdock 1967).

Society Potter Society Potter

Nunivak
Baffinland
Yokuts

S. Ute
Shivwits
Kaibab
Walapai
Oto

Hano
Tewa

Zapotec
Cochiti
Ponca
Klamath
Sanpoil
White Knife
Chemehuevi
Arikara
Hidatsa
Mixe

e S B S S S
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It H, is true, then the mean and standard deviation under the binomial should
be

1
,u=np=§{20)-10

o=Vnpg=V5=224

The sample of 20 cases produced 16 societies with positive signs, so it becomes
necessary to find the area under the normal curve to the right of 15.5, as shown
in Fig. 12.1.

The appropriate value of z is

_155-10.0 _
S YT 2.45

From Table A.3, the associated probability value is found to be
p =0.50—-0.4929 = 0.0071

This probability falls well within the region of rejection, so the null hypothesis is
rejected. At the 0.01 level, these findings are consistent with the hypothesis that
females tend to be potters in North America. But since 20 percent of the sample
societies had male potters, one cannot unequivocably assumae:that all prehis-
loric potters were in fact female. The analogy remains probabilistie, .

To summarize the sign test:

Step |. Statistical hypotheses:

Ho: p=g Hi: p=>q
Step Il. Statistical model: The normal approximation to the binomial distribu-
lion is applied under the following assumptions: (1) the sampling is random, (2)

the Bernoulli random variables are independent, (3) the measurement scale is at
least ordinal.

Step Ill. Level of significance: Let « =0.01 for a directional test.

7
10.0 155

Fig. 12.1
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Step V. Region of rejection: The sign test is an exact test, so the critical
probability value is defined directly by «. All probabilities =0.01 will reject H...

Step V. Calculations and statistical decision: The sample value was computed
earlier to be p = 0.0071, so H, is rejected.

Step VI. Nonstatistical decision: This sample is consistent with the hypothesis
that prehistoric potters tended to be female.

Caution is in order when small samples are used in the sign test. When n s
very small, the most extreme possible probability might still not fall within the
region of rejection. Consider, for example, the case in which n=4. The
probability of obtaining all pluses is (¥%)*=0.0625. Of course this value will
never exceed any conventional alpha level. The sample size must be at least
larger than about 6, and larger values are desirable.

Because the sign test ignores the quantitative differences between variates, i
is clear that the t-test utilizes more information and hence is more efficient. That
is, the sign test will often fail to detect a difference which the t-test would have
declared significant. Using the sign test thus increases the probability of a Type
Il error, and "‘power" is decreased. Thus, the parametric t-test is preferable as
fong as the assumptions can be justified. On the other hand, once results are
judged significant by the sign test, these findings will generally be replicated by
the more powerful tests.

The sign test is particularly well suited to cases involving paired variates. It is
well known in social psychology, for example, that IQ scores can be strongly
influenced by the environment during early childhood. Let us consider the
hypothesis that urban-raised children will, on the average, fare better on I1Q tests
than children raised in a rural setting. To eliminate as many genetic (inherited)
factors as possible, nine pairs of monozygotic twins were located; in each pair
one twin was raised in the city, while the other was reared in rural conditions.
The IQ scores are reproduced in Table 12.6.

A similar situation was investigated in Chapter 10 (Section 10.8) using the
t-test for paired variates. But because of the vagaries of 1Q testing, the
investigator felt uneasy about the validity of using the raw IQ scores, so he
elected to consider only the absolute differences between scores rather than
consider the magnitude, which might be spurious. The data are now reduced to
a form no longer applicable to the t-test.

The null hypothesis in this situation holds that the number of pluses and
minuses should be roughly equal. This test is one-tailed because H, predicia
that the city-reared children will receive superior 1Q scores to the rural children
Alpha has been fixed at 0.05.

The data in Table 12.6 indicate that in six of the nine pairs, the urban-raised
child received superior 1Q scores. Are these findings significant enough 1o

justify the research hypothesis?
If H, is true, then the mean and standard deviations should be

1
p=np=5(9)=45
o =Vnpg=15
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TABLE 12.6 1Q scores from monozygotic twins
raised In urban and rural environ-

ments.
1Q Scores Differences
Twin Code R

No. Rural  Urban Raw Sign
A 84 92 - B -
B 87 86 1 &
(] 100 104 - 4 -
D 78 76 2 +
E 89 102 -13 -
F 96 92 4 i
G 115 123 el - -
H 108 112 - 4 -
! 72 76 - 4 -

Then z is found to be (5.5—4.5)/1.5=0.67 and Table A.3 indicates that
A=0.2486. The resulting probability value thus is p=0.2614, a figure which is
obviously not significant, and H, cannot be rejected. These results thus fail to
support the research hypothesis that city and rural upbringing has a signifi-
cantly positive effect upon IQ scores.

Example 12.6

- -

In his monograph Descendants of Immigrants (1912), Franz Boas col-
lected a wealth of comparative data, in addition to the stature information
considered earlier. Boas was particularly interested in hair color because
of its visibility and widespread significance as a racial indicator. Unfortu-
nately, the modern techniques of physical anthropology for determining
hair color (using standardized samples and reflectance spectro-
photometry) were unavailable in 1908 when Boas was commissioned by
the U.S. Immigration Commission to investigate the physical changes of
immigrants. So Boas devised a method of measuring whereby the hair
immediately over the forehead was ranked along an ordinal scale ranging
from black to flaxen. Each color grade was assigned a number from 1 to
17. One set of Boas’ data compared hair color of American-born and
od foreign-born Sicilian males (listed below) paired in age-graded classes.
10 ' Is there a significant difference in hair color?

' This example raises some interesting problems of measurement. Be-
cause the hair-color categories consist of discrete ordered categories, the
level of measurement is only ordinal, thereby negating use of the t-test for
paired variates. The sign test allows comparison of two samples without
assuming anything about the level of measurement, other than that Boas
properly ranked hair color from dark to light.

c>eae
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e : Hair color of Sicilian males (data from Boas 1912: table IX).

Age Class,
years American-born Foreign-born Difference

10

o+ o (| +

O O~NODOOWOoOEmOOoNO

ol oo | |

The original set of 13 pairs is reduced to only n =7, once the tied scores
are removed. If H, is true, the binomial parameters are

=30 =35

RS

The standardized normal deviate is computed as usual.

_25-35

z ~—1—'3—2——= ~0.76

The corresponding area under the normal curve is C=0.2236 and,
because the test is two-tailed, p=2(C)=0.4472. Clearly, the null
hypothesis remains inviolate. We conclude that Boas’' data indicates
no particular modification in hair color between American-born and
foreign-born Sicilians.

12.4.2 The Wilcoxon Signed-Ranks Test

The sign test is useful when the assumptions of the paired t-test are untenabis,
but the sign test utilized only the directional relationships within a set of data,
ignoring the magnitude of difference in every case. The Wilcoxon Signed-Ra
Test is a more powerful nonparametric tool which maintains the relative
magnitude of difference between the ranked pair. The Wilcoxon method gives
more weight to greater differences than to smaller ones, while the sign tesf
records only which variate is larger, but not how much larger.
Let us examine the workings of the Wilcoxon test in another exa
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involving monozygotic twins. Some subtle physical differences sometimes are
known to exist between first- and second-born twins; a first-born child, for
instance, is often more dolichocephalic (roundheaded) than its twin, probably
due to the fetal posture at birth. Some investigators likewise have noted a size
difference between monozygotic twins. Since monozygotic twins are known to
share an identical heritage and to be exactly of the same age, this difference in
size can be ascribed only to some aspect of intrauterine conditions. An apparent
factor seems to be the structure of the prenatal blood circulation because there
is a "'third circulation"—in addition to parental and fetal—by which blood
actually passes from one twin to the other through the placenta. Other prenatal
environmental factors could be due to variability in the uterine mucosa, and also
variability in the size of placental vessels themselves. Any of these sources could
result in one fetus receiving better nourishment than its twin.

With these factors in mind, it is possible to posit, following Gunnar Dahlberg,
that the first-born twin tends to be larger than the second-born twin. Table 12.7
contains a sample of 16 sets of stature measurements collected by Dahlberg
(1928). Do these data support the hypothesis that first-born twins tend to be
larger?

The relations within these data could be tested by the t-test, as long as one is
willing to assume an underlying normal distribution. But if we wish to handle
these data in nonparametric fashion, then either the sign or Wilcoxon Signed-
Ranks Test could be used. The Wilcoxon test is preferable here in order to
preserve the magnitude of size differences between twins.

The one-tailed situation produces the following statistical hypotheses for the
Wilcoxon Signed-Ranks test:

H.: Median difference <0 H:: Median difference >0

These hypotheses are comparable with those of the t- and sign tests, but each
statistical test is based upon rather different assumptions and procedures.

The Wilcoxon test statistic is called T, defined as the sum of differences of
ranks with the least frequent sign. Let X, represent variates in the first sample
and Y; variates in the second sample. If fewer differences exist between (X, — Yi),
T is defined as the sum of these negative differences; otherwise the positive
differences are summed to yield T.

The initial step in computing the Wilcoxon Signed-Ranks Test is to list the
differences in stature within each pair, hence reducing the 16 pairs of variates in
Table 12.7 to only 16 values of D. Whereas the sign test expressed these
differences only in present/absent categories, the Wilcoxon paired test pre-
serves the ranks of the differences (and, of course, the t-test preserves the
actual quantitative magnitude). Two pairs of twins were exactly the same size,
so these pairs are excluded from further consideration, and the sample size is
reduced to n =14. The absolute value of the remaining differences are then
assigned rank orderings, with the smallest difference receiving the assigned
rank of 1. Ties are handled as before by assigning the average of the tied ranks
to each tied case.

Two different methods are available for determining the statistical signifi-
cance of these pairwise ranks. As long as the number of cases are fewer than 50,
Table A.7 can be used directly to define the critical region of rejection. In this
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case, with n = 14, the critical level at the 0.05 level is found to be 25. This mean:
that any observed sum of ranks less than or equal to 25 will be considercn
significant. Had this test been two-tailed, then the critical value of T would b«
found under a/2 = 0.025; for n = 14, this critical value of T =21.

The observed value of T is found in Table 12.7 to be 23, which is less than the
critical value of T = 25; the critical number indicates “‘the maximum number o
aberrant cases,” so values less than or equal to the critical value are significan!
H, is rejected, and we conclude that Dahlberg's data on monozygotic twins are
consistent with random fluctuations: that first-born twins do not appear to be
significantly larger than the second-born.

Wilcoxon’'s T statistic is approximately distributed in normal fashion o
samples of greater than about n=20, so the results of the Wilcoxon Signed
Ranks Test can be evaluated using a slightly modified version of the standar
dized normal deviate:

zZ= T-p (12.8)
a
where the parametric mean and standard deviation for N = n cases are definea
as

_N(N+1)
Koy

_ IN(N+1)2N +1)
7= 24

TABLE 12.7 Stature differences (in millimeters) between first- and second-bors
monozygotic twins (data from Dahlberg 1926: appendix |, table 1).

Stature, First Born Stature, Second Born Difference *ﬂ .

X, mm Y, mm D=X-Y. X >Y X<y
1014 1019 -5 "
1186 1179 7 6
1348 1334 14 10
1357 1340 17 12
1704 1709 — 5 a
1454 1434 20 13
1592 1534 58 14
1245 1261 -186 "
1380 1377 3 2
1052 1058 - 6 8
1273 1262 1 9
1426 1417 g 7.5
1409 1400 9 75
1253 1252 1 1
1396 1396 0
1219 1219 0

% of ranks = 82 T=2)
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These parameters allow evaluation of the deviation of T relative to the familiar
normal curve.

This large-sample method can be illustrated by returning to Boas’ data on the
physical changes of immigrants to the United States. These data were already
analyzed by the paired version of the t-test (Example 10.8) in which a sample of
American-born Bohemians were found to be significantly taller than those of
foreign birth. The informants were paired in age grades for ages 4 through 20.
These data are rank-ordered in Table 12.8, in which we find the value of the
Wilcoxon statistictobe T=21.

e ———— £ L —

L ——

The parametric mean and standard deviation for a population of N=n =17 3
r pairs are {5
m= % =765 1

_ | [8Ea)
o \/ 54 21.12

The value of z can be computed from Expression (12.6) as

21-765
5142 283

The value of z = —2.63 corresponds to a probability figure of p = 0.0048 in Table g
A.3, a figure which is highly significant. H, is rejected and we conclude that :
American-born Bohemians seem to be notably taller than foreign-born Bohe- i g

SXON
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mians of the same racial stock. These findings agree with those of the t-test .

T TABLE 12.8 Comparison of stature between American- and foreign- i N
nn , born Bohemians (data from Boas 1912), -

Ranks

- ) American- Foreign- i i
Age born, cm born, cm D X >Y, X <Y,

4 99.4 98.0 +1.4 8
5 105.7 101.0 +4.7 16
6 110.7 110.6 +0.1 1
7 116.0 111.7 +4.3 145
8 122.5 118.2 +43 14.8
9 128.5 128.1 +0.4 4
y 10 132.7 135.1 —24 9.5
| B 11 137.7 134.7 +3.0 12 )
11 i ' 12 1411 140.0 +1.1 5
: 13 147.9 1481 ~0.2 2
5 14 152.3 150.4 +1.9 7
== 15 155.5 155.2 +0.3 3
16 162.7 160.7 +2.0 B
17 167.6 165.0 +2.6 11
18 175.0 167.7 +7.3 17
19 171.2 167.0 +4.2 13
20 168.6 171.0 -24 9.5
- 23 Y ranks =132 T =21
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performed earlier, and the Wilcoxen Signed-Rank Test requires fewer p:
cedural assumptions. Note further that since n = 17, Table A.7 could also ha.
been used to compute an associated probability of p <0.005.

12.5 THE KOLMOGOROV-SMIRNOV ONE-SAMPLE TEST

The Kolmogorov-Smirnov test compares observed and expected frequencies

a manner quite similar to the R X C chi-square test (Section 11.8). Both tex!
consider the '‘goodness of fit" between an expected distribution and 1t
distribution of an actual random sample. The Kolmogorov-Smirnov test
preferable to y* when the samples are small because the Kolmogorov-Smirnc:.
method always provides an exact probability, regardless of n. Remember thas
chi-square assumes a sample size sufficient to satisfy the approximation to »
continuous distribution of the x* statistic.

This simple notion behind the Kolmogorov-Smirnov One-Sample Test car
readily be illustrated using an archaeological example. Small quantities of Ear!y
Woodland (Black Sand phase) pottery sherds were found at the Macoupin site i»
the lower lllinois Valley (Rackerby 1973). Because the bulk of the cultura
materials at Macoupin are Middle Woodland (Havana phase) in age, lhe
excavators wanted to know whether these rare Early Woodland materials were
associated with a particular stratigraphic level at the site or whether the
aberrant sherds were simply strewn randomly throughout the site midden. The
later Havana phase materials ran consistently from the surface to a depth of
about 24 inches, while the Black Sand sherds seemed to concentrate in the
upper levels: 0-6 inches, 11 sherds; 6-12 inches, 13 sherds; 12-18 inches, !
sherds; 18-24 inches, 3 sherds. Can we justify the conclusion that the Blacs
Sand sherds are uniformly distributed throughout the midden at the Macoup»
site?

The Kolmogorov-Smirnov One-Sample Test can readily answer this question
The first step is to plot the observed sherd frequencies (labelled f in Table 12 #
by stratigraphic unit. Then the cumulative proportions of each stratigraphic und
are computed. The 0 to 6 inch level contained 11/38 X 100 = 28.9 percent of a#
the Black Sand sherds. The top two levels (0 to 6 and 6 to 12 inches) contained .
{11+ 13)/38x 100=63.2 percent of all these sherds, and so forth. Because we
know that the Havana phase sherds were uniformly dispersed throughout the

TABLE 12.9 Stratigraphic placement of Black Sand pottery sherds at the Macoups
site (data from Rackerby 1973).

Stratigraphic Frequency, Cumulative Cumulative Expected
Unit, inches f Frequency Proportion Proportion  Difference
0-6 11 11 11/38 =0.289 0.250 0.039
6-12 13 24 24/38 = 0.632 0.500 0.132
12-18 11 35 35/38=0.921 0.750 0.171
18-24 3 38 38/38=1.0 1.0 0.0
n =38
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deposit, the null hypothesis states that the Black Sand should also distribute
randomly throughout the levels of the site. So the expected cumulative propor-
tion of the first stratum is 1/4 = 0.25, the expected cumulative proportion of the
first two strata is 1/2=0.50, and so on. The main difference between this
procedure and that of the familiar chi-square test is how the expected frequen-
cies have been computed. The Kolomogorov-Smirnov method deals with
expected cumulative proportions, while the x* projects deal with expected
absolute frequencies.

The final operation is to find the absolute differences between the observed
and expected proportions (final column of Table 12.9). The Kolmogorov—
Smirnov statistic, D, is merely the maximum difference between expected and
observed proportions. In the example from the Macoupin site, D is found in the
third row, the stratum consisting of 12 to 18 inches below the surface:

D =0171

The distribution of the Kolmogorov-Smirnov D statistic has been compiled in
Table A.9. For the case of the 38 Black Sand potsherds, the critical value of D at

the 0.05 level is
1.36

D /38 0.221
The observed D falls short of the critical level, so H, is not rejected. Use of the
Kolmogorov-Smirnov One-Sample Test allowed the excavator to conclude that
"these data do not demonstrate stratigraphically that the Havana deposits are
superimposed on the Black Sand deposit, but rather that there is considerable
admixture of earlier material in later levels” (Rackerby 1973: 99).

Only the two-tailed version of the Kolmogorov-Smirnov One-Sample Test has
been discussed here. The critical regions for the one-tailed option are poorly
understood and have been omitted (see Siegel 1956:49) for appropriate
references).

12.6 RUNS TEST

When a coin is tossed ten times, a “run’ of ten heads is obviously a quite
unlikely outcome.

HHHHHHHHHH

Whether this succession represents good or evil luck depends only on where one
has placed his money, and Chapter 5 has considered methods to evaluate
precisely tHe probabilities of such outcomes. But a second kind of departure
'rom randomness has yet to be considered, a departure dealing only with
wuccessions of events rather than with their relative frequency. This section will
consider a test to determine randomness in successive events.

Everyone has heard the riverboat gambler's expression "‘a run of luck.” This
sequence can consist of good luck—""Stick with me, baby, | can't lose!!"—or,
more commonly, bad luck—""Somebody up there hates me."” But in either case,
a run of luck involves a sequence of events which deviates from expectation
inder randomness.
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One possible outcome from tossing a coin ten times is
HHHHHTTTTT

In terms of strict frequency, the overall ratio 50:50 is the most likely outcome 1«
a fair coin. But the occurrence of precisely five heads followed by exactly tive
tails is not a very likely event in terms of succession. In each of the te
independent frials, there are only two ‘‘runs”: The sequence of five head:
comprises the first run, followed by a second run of five tails. This is a very rar.
outcome. In fact, when we concentrate strictly upon sequence, there is only on«
more extreme outcome—a single run of all heads or all tails. These sequences
have many fewer runs than are expected from chance phenomena.

At the other extreme, it is possible to have too many runs in a random
sequence:

HTHTHTHTHT

The alternating head-tail sequence is a very unlikely event; in this case, a total ol
ten runs occurred. Clearly, the number of possible runs varies from one to n
for any dichotomous variable. But the most likely number of runs is somewhers
intermediate between the two extremes.

The runs test uses this simple concept of sequence to test for randomness
The more extreme (that is, the less frequent) the number of runs, the less likely #
is that the sample is actually a random mix. The null hypothesis in this case u
that the two dichotomous states are well mixed, that independent events should
exhibit no tendency either to clump or to rigidly alternate. The computations of
the runs tests can be illustrated by a simple example.

One particularly prolific family has spawned 12 children. While the frequen
cies are as expected, six boys and six girls, the order of birth seems rather odd
since the boys were born almost in sequence, followed by most of the femals
offspring.

MFMMMMMFFFFF

Does this sequence depart from randomness so far that we are entitled o
question that the order of birth is randomly determined?
First it is necessary to find the total number of runs in the (1, + n.) births

M F MMMMM FFFFF
1 2 3 4

There are only four runs in this sequence of 12 seemingly random events. The
statistical dilemma is to decide whether four runs in 12 events is a rare event.

For small runs as this, the critical values have been compiled in Table A 14
Whenever an observed number of runs is less than or equal to the appropri
tabled value, then H, can be rejected at the 0.05 level. Strictly speaking, this is
test for too few runs, so the result is one-tailed. Tables for the alternative (fo#
many runs) can be found in Siegel (1956).°

®As Blalock (1972: 252) has pointed out, this situation might cause some confusion unless cae
taken with terminology. The runs test is one-tailed because we are considering only the possibility &
too few runs. But, unlike most one-tailed tests, the direction has not been predicted, since eithe
variable X or ¥ could occur first. The sign test is a one-tailed test in which direction is not specifiea
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Table A.10 indicates that for n, = 6 and n. = 6, the critical region for the 0.05
level is three or fewer runs. Because four runs were observed in the birth
sequence above, H, is not rejected at the 0.05 level. No doubt arises that the
order of birth departs from a random sequence.

When either sample size exceeds 20, then Table A.10 is no longer applicable.
But as the sample sizes increase, the distribution of r (the number of runs)
approaches normality with mean and standard deviation as follows

_ 2n,n: +1
ny+n:

— Jﬁmg(Zﬂ\ﬂr—n\"nz)
! (nv+ ) (m+n.—1)
where n =n,+n. This handy, yet slightly less cumbersome, computational
procedure is illustrated in Example 12.7.
It is interesting to note that although the number of runs, r, approaches
normality in the larger samples, the runs test remains nonparametric because
the normal distribution still need not be assumed for the population of variates.

L
(12.7)

Example 12.7

The table below contains the annual rainfall tabulation for the period
1901-1950 for Sante Fe, New Mexico. If we operationally define “‘dry year”
as one receiving 13 inches or less rainfall, can we say that wet and dry
years appear to cluster (data from Schulman 1956: table 19A)?

Rainfall, Rainfall,
Year inches Year inches
1901 15.61 1920 18.56
1902 16.53 1921 14.37
1903 15.77 1922 13.67
1904 5.49 1923 10.75
1905 19.34 1924 13.63
1906 14.06 1925 B.14
1907 19.42 1926 15.83
1908 13.23 1927 13.20
1909 9.71 1928 14.70
1910 12.54 1929 13.60
1911 10.66 1930 17.14
1912 17.78 1931 15.47
1913 12.72 1932 16.90
1914 12.75 1933 14.23
1915 20.36 1934 12.88
1916 16.16 1935 13.71
1917 10.98 1936 12.32
1918 9.58 1937 19.48
1919 17.92 1938 11.49
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Rainfall, Rainfall,
Year inches Year inches
1939 15.00 1946 11.30
1940 15.62 1947 14.17
1941 17.96 1948 16.06
1942 12.63 1949 15.41
1943 12.00 1950 12.31
1944 6.79 Mean 14.27
1945 13.03

There are a total of 22 runs, with the number of dry years n, =17 and the
number of wet years n.= 33. The mean of the distribution of r is

e = 2070830 4 _ 54 44
and the standard deviation is

_ [2(17)(33)(2:17-33 — 17 - 33)
s \/ 50°(49)

=3.12

The standardized deviate is thus

_22-2344
Z2="335 = 0.46
This value is obviously not significant and we can conclude that these

precipitation figures do not tend to cluster in wet and dry years.

12.7 SOME ASSUMPTIONS OF NONPARAMETRIC
STATISTICS

The preceding nonparametric statistical techniques were considered in a%
almost negative fashion: The “Jones test for circular asymmetry” is uselul
because we don’t have to assume X, Y, or even Z. But let us not be misled by g
terms “‘nonparametric’’ or “distribution-free’ to the erroneous conclusion !
these techniques are somehow nonassuming or assumption-free. Nonpara
ric statistical tests make some very important assumptions which should not %
ignored.

First of all, all nonparametric techniques of statistical inference assuma tha#
the sample was constructed through random sampling. Specifically, sac®
element in the population must have had an equal and independent chance &
selection.

In addition, many of the distribution-free tests involve comparing two
ples, such as the chi-square test of a 2x 2 table, Fisher's Exact Test, |
Wilcoxon Signed-Ranks Test, and the Kolmogorov-Smirnov Two-Sample T
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These two samples are assumed to be mutually independent in that the controls
for selection of the first sample can in no way influence selection of the second
sample. Violation of this independence can seriously change the computed
levels of significance unless the test is specifically constructed to handle such
dependence (as with the McNemar test).

Finally, the ordinal level tests assume that the underlying scales of measure-
ment are actually continuous in nature. The units of observation are discrete
because of the relative crude scales used for measurement: Either men or
women make the pottery; either a group is heavily reliant upon fishing, or hardly
dependent upon fishing, or they don’t fish at all; either langur A dominates
langur B or otherwise. Because of these crude categories of measurements,
independent variates will occasionally be rated into the same category. The
Ethnographic Atlas, for instance, rates both the Copper Eskimo and the Kaska as
36 to 45 percent dependent upon hunting. But even though these two societies
are operationally considered to be "equal,” we still must assume that there is
really some slight difference which has simply gone undetected. This tie in
ranking occurred because of our gross scale of measurement; given a suitably
accurate measuring system, presumably we could detect a difference between
the Copper Eskimo and the Kaska. Thus, in nonparametric testing, all ties are
assumed to result from a gross system of measurement. So a moderate number of
ties are permitted in the ordinal-level testing as long as ties are corrected by
suitable formulas. Such is the conventional thinking about ties (for example,
Siegel 1956).

But it must be mentioned that recent work on the problems of ties indicates
that even when a high degree of agreement occurs in ordinal scales, there is
almost no effect upon the computed level of significance (Conover 1971 and
Noether 1972). Of course some nonparametric tests are more appropriate than
others in the presence of ties. The Wilcoxon Two-Sample Test, for instance,
becomes computationally undesirable as the ties increase, so one would do well
to switch to an alternative rank-order test. The assumption of continuity is
mentioned here only to warn prospective users that although one is commonly
cautioned to assume an underlying continuity of measurement, such guidelines
have little practical effect upon modern application of the rank-order statistics.

SUGGESTIONS FOR FURTHER READING
Blalock (1972: chapter 14)
Conover (1971: chapters 5, 6)
Siegel (1956)

EXERCISES

12.1  The male adults in two contiguous bands of hunter-gatherers were
measured for stature (in centimeters):

Band A: 152 159 163 149 164
Band B: 156 167 169 155 172
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§ Is there a significant difference in stature between these two bands (use
) the Wilcoxon Two-Sample Test)?

12.2 Five radiocarbon dates are available for each of two archaeologica!
sites:

Site A: A.D.520 A.D. 490 A.D.525 A.D. 540 A.D. 690
Site B: A.D. 590 400 B.C. A.D. 740 A.D.730 A.D. 820

(a) Use the t-test to see whether site A is significantly older than site B.
(b) Use the Wilcoxon Two-Sample Test to test the same hypothesis.
(c) Which method is preferable? Why?

A census revealed the following mortality figures for two societies:

Age at Death

Society A: 62 54 78 56 45 58 64 63 63 34 53 45
Society B: 54 78 67 45 68 69 39 B3 78 68 71 69

Does society B appear to be longer-lived than society A?

Two neighboring archaeological sites have been excavated and the
projectile points from each analyzed.

Total Weight,
grams Site A Site B

<1.0
1.0-1.9
2.0~29
3.0~-3.9
4.0-49
5.0~-5.9

=6.0

In this area, points become lighter through time. Is site A later than site
B? (Use the Kolmogorov-Smirnov Two-Sample Test.)

12.5 The following grades were assigned in a freshman anthropology course:

gl g gy

Eventually Did Not
Total Graduated Graduate

e —
i Lt an o,

35 28 7
130 82 48
90 62 28
52 38 14
18 3 15
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Use the appropriate nonparametric method to determine whether those
students with higher grades in this freshman course tended to graduate
more frequently than those students receiving lower grades.

cal
12.6 Fluted points are important time markers of the big-game hunting
tradition in North America. McKenzie (1970) compiled the following data
on the number of individual flutes per projectile points for two early
types in Ohio.
3,
Number of Cumberland  Holcombe
Flutes Points Points
i 0 11 10
4 1 22 8
2 4 0
— 3 1 4
45 1 4 0 0
89 >4 0 1
i the Is there a significant difference in the number of flutes between Cumber-
: land and Holcombe points?
12.7 The following figures were obtained in a study of work habits among
married couples.
Hours Worked per Week
. Couple Males Females
A 39 4
B 51 42
C 23 35
D 45 39
E 67 54
an site F 39 43
' G 42 46
‘ H 51 51
- I 32 36
ourse 3 ; J 40 42
J K 56 53
x L 41 41
X M 43 45
. 7 N 37 39
o} 40 41

E Do these findings indicate that females tend to work more hours per
' week than males? (Use the sign test.)

: 128 Use the Wilcoxon Signed-Ranks Test to solve Exercise 12.7.
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