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13 Linear
Regression

i

@ Nothing counts, we might say, unless it can be counted.—
G. Rees

13.1 THE LINEAR RELATIONSHIP

Throughout the past few chapters, we have assigned rather specific definitions
to commonplace terms such as variable, constant, random, population, and
significance. Time has come to consider another Big Word, and that word is
function. When the value of a random variable Y changes in response to a
corresponding change in random variable X, then Y is said to be a function of X.
The nature of this dependency is presently irrelevant. Regardless of whether the
dependency is specific or generalized, causal or coincidental, all such relation-
ships can be symbolized as

Y = f(X)

to be read as 'Y is a function of X.”

Some elementary relationships between random variables were encountered
in the discussion of the chi-square statistic, but we must now consider the
generalized bivariate relationship in more detail. Specifically, there are two
common methods for expressing the relationship between two variables—

mathematical equations and graphs.
The most elementary function between two random variables is simply

Y=f(X)=X

This function tells us that the value of Y must always exactly equal the value of
X. This simple function is that assumed in tree-ring dating (dendrochronology)
lor example. A perfect one-to-one relationship exists between the age of a living
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tree and the number of annual rings: One ring represents one year. *
number of annual rings = age in years =
Y=X kil
1
Because Y = f(X) = X, the number of annual rings (Y) is a function of X, the age . -
of the tree. This function predicts that a ten-year-old tree should have exactly ¥
ten growth rings. A 1000-year-old tree must have 1000 rings. >
u‘.
Y
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Age in Years

Fig. 13.1 Relationship between age of tree and number of annual growth rings.

Functional relationships can also be graphed. Figure 13.1 shows the graph for
the function Y = X, The vertical axis (the ordinate) generally is taken to denote Y
and the horizontal X-axis (the abscissa) plots the values of the X variable. The
Y-axis in this case depicts the number of growth rings per tree and the abscissa
scales the tree’s age in years. The ordinate meets the abscissa at the origin of
the graph, so the origin of Fig. 13.1 represents zero on both the X and Y scales
Zero age predicts zero annual rings.

The appropriate curve forFig. 13.1 was found by plotting the various values

satisfying the equation Y = X.

WhenXis: 0 1t 2 4 7 28 99

ThenYis: 0 1 2 4 7 28 99
This curve is "linear’” because all of these potential values can be described by a
single straight line. This ““curve” commences at the origin because both scales
truncate at zero; a negative age or a minus count of rings is patently

impossible.
Convention dictates that the X variable be called the predictor {or indepen
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dent) variable and that Y be the predicted or dependent variable. Both terms
follow from the general function Y = f(X). Because the X variable can often be
controlled in experimental situations, a change in X is said to induce a shiftin Y.
Sometimes these terms reflect a causal sequence in which X is said to cause Y,
but care must be taken to avoid confusing a causality with simple prediction.
Fire engines are excellent indicators of fires, ambulances associate with
automobile accidents, and police officers invariably occur at the scene of a
crime.

Age is the independent variable in dendrochronology because we happen to
know from plant physiology that age causes trees to produce annual rings. Age
(X) accurately predicts the number of rings (Y); in this case, a causal relation-
ship exists. But prediction equations may often be written in the reverse form.
The number of rings predicts age. A living tree with ten rings must be exactly ten
years of age. This reasoning sets the foundation for the science of dendro-
chronology.

Tree-ring samples can be counted in living trees by careful use of an
increment borer. The tree is not harmed. Edmond Schulman, a dendro-
chronologist from the University of Arizona, took literally hundreds of borings
from a bristiecone forest located at an elevation over 10,000 feet in eastern
California. Using the simple function Y = X, Schulman discovered the oldest
living thing in the world. One bristlecone—lovingly christened Pine Alpha—
dated back to 2194 B.c. And Pine Alpha still lives! In this case, Y is the tree's
age, predicted by X, the number of annual rings. Obviously, the decision of
which variable is X (the predictor) depends strictly upon what one wishes to
predict, age or number of rings.

At the risk of repetition, let me underscore once again a canon of statistical
inference: Association must never be confused with causality. The predictive
relationship implicit in Y = f(X) may represent a true causal linkage, or it may
not. The issue is determined by substantive rather than statistical considera-
tions. The common statistical labels independent and dependent must not be
allowed to cloud the causal issue because these terms are often assigned
merely for convenience. The choice of independent variables lies with the
specific empirical intent or the perspective of the investigator. For this reason,
the X variable will be termed the predictor variable, to avoid any confusion of
true dependence or independence.

Let us now move to a bit mare complicated function:

Y = f(X) = BX

where B represents any constant.' The expression Y = 8X is another specific
example of the general function Y = f(X). In the previous example of a function,
Y = X, the multiplicative constant (8) was equal to unity, 8 = 1. The function
Y = X tells us that an increase in a single unit of X corresponds to an increase in
precisely one unit of Y. The more general case of Y = X implies a change in
one unit of X for every g units of change in Y. If ¥ = 10X, then one unit change
in X produces +10 units of change in Y. The constant 8 can likewise be
negative, in which case Y decreases with an increase in X.

‘Becareful here notto confuse the regression 8 with the probability of committing a Typelierror.
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An elementary example of the Y = gX function is the rate of exchange
between international monetary systems. Although these rates tend to fluctuate
daily, the relationship between any two currencies is fixed at any given point in
time. On March 4, 1974, the New York Times reported the commercial selling
rate between currencies of the United States and Spain to be 1.72. Translated
into functional notation, this relationship becomes Y = 1.72X, where X is the
value of the Spanish peseta and Y is the value of the U.S. penny (0.01 U.S
doliars). In other words, one U.S. penny is equal to 1.72 pesetas. This relation-
ship is diagrammed in Fig. 13.2. The functional line once again commences a!
the origin (zero U.S. pennies = zero pesetas) and extends indefinitely upward

Y
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Fig. 13.2 Relationship between U.S. and Spanish currency.

All monetary rates can be expressed in this simple form. Only the absolute value
of B changes to fit the particular circumstance. Note also how X is arbitrarily
assigned to the Spanish currency. There is no causal linkage in any of the
currency exchanges; X is simply a convenient point of reference.

Using the multiplicative constant 8 requires us to introduce another new
term, the slope. The multiplicative constant 8 represents the slope of a line. The
slope of the line in Fig. 13.1, for instance, is B = 1. One unit of change in X
creates one unit shift in Y. Similarly, in Fig. 13.2, a unit shift in the value of X
creates a 1.72 unit shift in Y. The magnitude of Y changes more relative to X in
the second case because the line is steeper. That is, the slope of the line in Fig
13.2 is greater than that of Fig. 13.1. Consider the two equations

Y=1X Y=172X

/
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The only difference between these two functions is the value of the multiplica-
tive constant. In the tree-ring example, 8§ must equal unity, while the exchange
rate had been fixed at B =1.72. So, clearly, the slope of any line depends only
upon the value of B. The lines will become steeper as 8 increases. Furthermore,
a positive value of 8 means that the function line slopes in a positive direction (Y
increasing with X); a negative B denotes a negative slope (Y decreasing as X
increases). Mathematically speaking, the slope of a line is given by the tangent
of the angle formed by the function line and the X-axis, but this derivation is not
important to our purposes. The meaning of B is also apparent simply from
plotting values of Y for given X.

The lines of Figs. 13.1 and 18.2 pass through the origins of their respective
graphs. This is reasonable: Trees of zero age have no annual rings, and all
monetary rates of exchange must commence with zero money. But one final
statistical phrase is required to completely generalize this discussion of the
linear relationship. Several lines are graphed in Fig. 13.3, each of which shares a
slope of B =1. These lines are all parallel, and differ only in their position
relative to the axes. Only line A passes through the origin. The equations for all
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Fig.13.3 Equations with identical slope but different Y-intercepts.
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other lines involve a new constant. For line B, this constantis « = 15 and for line
C, the constant takes the value of a = —10. This new term is called the additive
constant and is symbolized by «.* The general formula for all linear relation
ships can now be given:

Y=f(X)=a +BX

The term « is also known as the Y-intercept, since its value is the precise poini
at which the function line intercepts the Y-axis. When X =0, then Y = a. Only
when a =0 will the line intersect the origin; note that « =0 in Figs. 13.1 and
- 13.2.

The additive constant can be illustrated by Bergmann's rule, that biological
principle which relates an animal's size to the temperature of the habitat (see
Birdsell 1972:465-467). Bergmann's rule predicts that polar animals should
have a greater body size than animals living near the equator. In general, a
larger body mass will tend to retard heat loss in colder climates, so less energy
is expended by larger bodies. This relationship is expressed in Fig. 13.4. For

80
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60 —
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40 —

T T T T 1 X
0 20 40 60 80 100

Mean Annual Temperature {°F)

Fig. 13.4 Graph illustrating Bergmann's rule (after Roberts 1953).

those readers who seem comforted by the belief that man has little in common
with other animals, Fig. 13.4 might come as something of a shock. This graph
has been derived from human populations throughout the world, and size
clearly decreases with an increase in temperature. Bergmann's rule predicts
human size as well as that of the lower beasts. This expression can be

2Once again, do not confuse the regression « with the probability of committing a Type | erro
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summarized as
Y =75.6—-0.305X

where X is measured in degrees Fahrenheit and human weight (Y) is given in
kilograms. This function tells us a great deal about the interrelationship
between temperature and size. For every additional degree of temperature, the
average weight of a human population can be expected to decrease about
0.305 kg. Bergmann’s rule indicates that environmental factors tend to operate
on mankind regardless of culture. Even in a mild climate such as southern

" California, between 80 and 90 percent of the food consumed is required to

maintain a body temperature of 98.6F; quite obviously, the situation is much
worse in an Arctic environment. Despite the fact that igloos are heated to a
balmy 75 degrees, the true limiting factor upon human populations appears to
be the —60°F temperatures encountered outside (Birdsell 1972:467).
To summarize, any linear relationship can be described by the simple
equation
Y=a+pX (13.1)

where X is the predictor variable, Y is the predicted variable, « is the
Y-intercept, and B is the slope of the line.

13.2 LEAST SQUARES REGRESSION (MODEL I
REGRESSION)

With the formal properties of the linear relationship at hand, we arrive at the
major topic of this chapter—the concept of regression. The actual word
"regression” sometimes causes a bit of confusion, but this distraction is
unnecessary once one realizes the genesis of the concept. The pioneering effort
on the study of linear relationships was made by Sir Francis Galton, a
nineteenth-century scholar of rather amazing breadth. Galton was an accom-
plished statistician, whose early studies of heredity were among the vanguard of
pre-Mendelian genetics. He was also a prominent anthropologist (in the original
sense of the term), contributing to such diverse fields as dermatoglyphics
(fingerprinting), anthropometry, evolution, and eugenics. (Sir Francis is, inci-
dentally, the same Galton whose infamous ‘“problem” has bemused an-
thropologists for the past 80 years, as discussed in Chapter 15.)

Of immediate interest is Galton’s paper entitled "REGRESSION towards
MEDIOCRITY in HEREDITARY STATURE,” published by The Journal of the
Anthropological Institute of Great Britain and Ireland in 1885. In this classic
paper, Galton advanced his ’Law of Regression.’”” He hypothesized as a result of
genetic experiments upon peas that “offspring did not tend to resemble their
parent seeds in size—but to be always more mediocre than they—to be smaller
than the parents if the parents were large; to be larger than the parents, if the
parents were very small’’ (1885:246). Galton felt that offspring tend to “'regress’’
toward the population average; hence his title ‘’‘Regression towards Medioc-
rity....” To generalize this relationship, Sir Francis compiled hundreds of
measurements of human stature and plotted these points on the familiar X-Y
coordinate axis, similar to those already considered. Parent’s stature was plotted
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against the stature of the offspring, and a marked linear relationship emerged
Galton called the line describing this positive relationship a line of regressiar
because it demonstrated how offspring "‘regressed’ toward mediocrity. Statist,
cians subsequently modified Galton’s idea to apply to all lines predicting value«
of one random variable (Y) from knowledge of the other random variable (X
Therefore, the line in Fig. 13.4 is a regression line because it predicts human sizo
(Y), given mean annual temperature (X). Similarly, the lines in Section 13!
predicted a tree's age (given the number of annual tree rings) and the U.S. dollar
equivalent to any particular sum of Spanish pesetas. Later in this chapter we will
even be able to rather accurately predict temperature by counting the number of
chirps from crickets. But it is first necessary to examine justhow regression lines
are computed.

No explanation was offered in Section 13.1 as to how the regression lines
were derived. The lines were simply offered as inalterable truth. Closer examina-
tion shows that actually two rather different kinds of regressions were consi-
dered. The tree-ring example is an exact fit, plotted without error. A ten-year-old
tree must have exactly ten growth rings, not nine or eleven or any other number
The relationship between the U.S. dollar and the Spanish peseta is likewise
exact, without any inherent error.

But the equations for Bergmann's rule represent a rather different
sort of regression. The line in Fig. 13.4 is not an exact relationship at all, but
rather an estimate roughly describing some data points. This particular graph
was derived by D. F. Roberts of the Anthropology Laboratory at Oxford
University. Roberts first surveyed the anthropometric literature and then
selected a series of 116 societies from around the world (Roberts 1953). The
relationship between these body weights and the mean annual temperature was
plotted point by point on the coordinate system shown in Fig. 13.5. Each symbol
in Fig. 13.5, represents one society. This method of graphical representation in
which N pairs of values for X and Y are arranged into a coordinate system is
called a scatter diagram, or simply a scattergram, so these points represent the
actual data relevant to Bergmann's rule. The problem now becomes how to
describe these 116 independent points by one simple line.

Unfortunately, any number of lines could be drawn through the points
swarming about Fig. 13.5. If ten people were asked to “‘eyeball” a line to
describe the points, ten different regression lines would undoubtedly result. But
ten lines describing one phenomenon are not succinct summaries of data, and
the problem becomes: How to choose?

A regression line is a linear function, and the direction of that line is
completely determined by the values of @« and 8 in the equation Y = a + 8X
Thus, the problem of fitting a line to scattergram points reduces simply to
determining values for « and 8 such that the N points lie as closely as possible to
the regression line. Remember that regression lines predict the values of Y,
given values of X. Then this equation must be derived from a scattergram, and
the resulting predictions are subject to error precisely because the points tend
to scatter. One way to minimize this error would be to draw a line such that
exactly half the points would fall above the line and half below. The errors could
then be said to "‘cancel out.”” But this definition is still unsuitable because many
such lines exist and would bisect a swarm of points. A truly satisfactory line of
regression must be unique.
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Fig. 13.5 Scattergram used to generate equation for Bergmann's rule in Fig. 13.4 (after
Roberts 1953: fig. 7).

in practice, the most suitable fit for a regression line is given by the criterion of
least squares. Simply defined, the least squares fit places a line such that the
sum of squares of the vertical deviations from this line is minimized. Consider
the graph in Fig. 13.6. Each point has two coordinates, the specific value of
random variable X {denoted by X ) and the specific value of the random variable
¥ (called Y;). The duty of the regression line is to estimate Y, given X, There is
no error associated with X, because this figure is arbitrarily selected. Given X,
lind Y. Hence, the total error of estimate in least squares linear regression
relates only to the random variable Y. This is an important point.

A glance at Fig. 13.6 reveals that there must actually be two values of the
random variable Y associated with a given X. First there are the actual observed
values of Y. These are the Y, which comprise the empirical data, such as the 116
wocieties plotted on Fig. 13.5. But there is also a second meaning of Y implied

n all scattergrams, and that is the value of Y estimated by the least squares
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Fig. 13.6

fine. Let us call these estimated values the Y. The estimated Y, are computed
from the least squares regression equation Y = a + 8 (we will see in a moment
how to find these values for « and B). Because the Y, are given by the
regression equation, it follows that all ¥, must lie directly upon the least squares
line. To reiterate: The observed data are represented by the Y, of a scattergram.
The expected values of Y, all of which lie directly on the regression line, are
denoted by Y.

The two distinct sets of coordinates are plotted for each datum point on Fig.
13.6. The first set represents the actual observed values, (X, Yi). Also present is
the estimated value of each point, predicted by the regression line. The
coordinates of the estimated position are (X, Y;). Only the Y, vaiues have been
estimated (by Y/); the X, are known and hence error-free. The accuracy of
estimation for the least squares line of regression can be judged by the distance
between the observed and expected positions, given by [Y, — Yi|. If the regres-
sion line (a prediction) passed directly through every observed point, then no
error is involved because Z|Y, ~ Y/|=0.

But few estimates are that accurate. Most data will have points lying some
distance from the regression line. The error for the first datum point on Fig. 13.6
is given by | Y, — Y,|. This is a measure of how far the actual point lies away from
its expected location in the least squares line. The error for the second point is
| Yz~ Y| and that for the Nth point is | Yx — Yy|. The least squares method places
a line of regression such that the sum of squares of the differences between
observed and expected values of Y is kept at the smallest possible level. This is
the "least squares’ criterion:

(Y= V)= (Ya= Y 4+ (Vo= Vo) o4 (Y = V)P
= minimum
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Because all the X; are "fixed" by arbitrary decision, the total error of estimation
is restricted to the vertical (Y) dimension. The least squares fit minimizes these
vertical distances between the swarm of points and the regression line describ-
ing them.

The issue now becomes relatively straightforward: Given a swarm of points
(that is, N observed pairs of Y, and X,), find the constants @ and 8 such that
(Y, — Y.)* is a minimum. This problem is solved only by methods beyond the
present scope—the formula is derived in Hays (1973:622-623) and Cramer
(1946:271-272)—and B is given by the following formula:

g 2 X = pa)(V — juv)
Z (X = px)’
_ZXY - NL;,E;Y :

ZX*— Nux (R
As before, the constant 3 represents the slope of the regression line. Equation
(13.2) might look somewhat forbidding at first, but closer inspection reveals that
the computations are really quite straightforward. Only a few readily determined
values are necessary: N (the number of pairs), ux, and py (the means of both
variables), £X? and XY (the sum of the cross products). (This expression is
actually a computing formula, similar to those introduced earlier for finding the
variance.)

Once B has been computed, it remains only to find a. Although not discussed
here, the derivation of least squares regression stipulates that the line must
always pass through the means of both dimensions, ux and u,. (These means
are, of course, computed from the observed datum points rather than the Y, the
estimated values of Y.) By substituting the mean values into Formula (13.1) and
solving this formula for the constant «,

@ = py — Blx (13.3)

Constants a and B8 now define the least squares estimate of the regression
equation. The resulting line of regression is the “best fit"" because the squared
deviations for Y; from Y, have been minimized. Whenever the least squares
method is used, it is customary to denote the regression equation as

Y =a+pBX (13.4)

The circumflex indicates that values of Y, are estimated, but not known. These
new methods are illustrated by a simplified example.

We know that body weight increases with height, but what is the exact nature
of this relationship? The students in a small physical anthropology seminar
were grouped by height into 2 inch intervals. One student was then randomly
selected from each group and measured. In this manner, a simple sample was
obtained for weight within each arbitrary height increment.

These measurements are plotted on Fig. 13.7. The X variates are graphed on
the abscissa as usual. X is “‘fixed" in this case because each 2 inch height class
has been purposely selected rather than randomly sampled. There is no
sampling error on X because students were simply assigned to the correct
group. The weights become the Y variates in this study, and are plotted on the
vertical axis. Each Y, is a random sample of weight from within a particular
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height class. The problem now is to fit a line describing the relationship between
these five datum points. The equation of this line can then be used as a loose
analogy to estimate the unknown weights for fossil material.

Five quantities are necessary for the least squares method of regression: £ X.
IX® 2Y, 2XY, and N. These values are found in Table 13.1, so the constant g (s
found from Expression (13.2):

36,475 5(65)(111.8) _
21,165 5(65?)

a is found from Formula (13.3):
a=111.8-3.5(65)=-115.7

8= +3.5

TABLE 13.1
X,

Height Class, Class Midpoint Y,
inches inches Weight, Ib XY Xz
60-62 61 98 5,978 3,721
62-64 63 107 6,741 3,969
64-66 65 109 7,085 4,225
66-68 67 117 7,839 4,489
68-70 69 128 8,832 4,761

2 X =325 Z Y =559 36,475 21,165

px =325/6=65.0in.; py =559/6=111.81ib.; N =5.

-
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i

The final regression equation describing these data is given by Expression "
(13.4): . )
Y=a+ X 4

=-115.7+3.5X E

=3.5X-115.7 i

This line can now be fitted to the datum points by substituting some arbitrarily

selected sample values. Take the hypothetical value of X, = 60. By substituting

into the regression Equation (13.4), we find that when X, is 60in., then I

Y. =94.31b. This point must lie on the regression line. Similarly, when X, = i

70in., the least squares equation tells us that Y, = 129.3 Ib. We now have two y

points which must lie on the line of regression. Because two points always

define a line, the new regression line describing the population of five datum if

points can be drawn on Fig. 13.7. 1
To summarize: The least squares criterion is a method of computing values of

a and B. This is simple statistical description. The least squares regression

equation, Y = a + BX, is thus equivalent to other descriptive measures such as .

the mean, the median, or the variance. As do all descriptive statistics, the data

being described may represent either a sample or a population. If the data

constitute a statistical population, then the descriptive summary is called a

parameter. If the data are sampled from a sample, then the descriptive measure

is a statistic. No statistical inference has taken place so far.

Example 13.1 i

The table below presents some blood pressure data from a sample of : :
American Indians of the Trio and Wajana tribes of Surinam. These figures % iy
were collected by Glanville and Geerdink in 1967 and 1968 on the Upper 1 ;
Courantyne, Lawa, and Tapanahony rivers where missions had recently i
been established (Glanville and Geerdink 1972). f

Find the regression equation which best describes this statistical ]

population.
Age Group Diastolic
(midpoint), Blood Pressure,
X Y X*? Xy Y?

5 60 25 300 3,600
b 7 63 49 441 3,969
\ 9 69 81 621 4,761
,‘ 11 74 121 814 5476
" l 13 75 169 975 5,625
| 15 71 225 1,065 5,041
| 17 77 289 1,309 5,929
| 19 85 361 1,615 7.225
' 21 78 441 1638 6,084
| 117 652 1,761 8778 47,710

ux = 13.0 years; py, =724 mm; N =0,
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Diastatic Blood Pressure (mm)
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Fig. 13.8

The first step in all problems of linear regression is to plot the
scattergram (Fig. 13.8). This helps to determine whether a linear solution
is applicable. The data in this case appear to fall in roughly linear fashion,
so computation of the regression equation can be attempted.

The multiplicative constant is found to be

= 8778 —9(13.0)(72.4) _ 307.2
1761 —9(13.0)° 240

=1.28

By substitution, the Y-intercept is
a=72.4-1.28(13.0) = 55.76

= 4 (1P —— -t
f""-"‘.ﬁ-, T i

The regression equation for the relationship is thus
Y =55.8+1.28X

3! This line can now be plotted by solving the equation for several arbitrary
z values of X.
= When X is --- then ¥ must be
i 6 63.4

10 68.6

20 81.40

This line has been added to the scattergram. Note that the line of
regression must pass through both px and wyv.

e
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Example 13.2

Use Kroeber’s data (Kroeber 1925: 891) on California Indian populations
(Table 3.1) to find the line of regression best describing the depopulation
in California between 1835 and 1860.

In this case, time is the predictor variable (X) and population is the
predicted variable (Y). The scattergram indicates that these data ploton a
relatively straight line, but the standard regression procedures are compli-
cated by the large numbers involved (Fig. 13.9). Each variable will be

Y
300,000
250,000 -

200,000

100,000

California Indian Population
B

50,000

T T T T X
1835 1840 1845 1850 1855 1860
Years A.D.

Fig. 13.9 (Data from Kroeber 1925: 891).

coded for easier computations. Time can be coded by subtracting 1800
from each variate; since time is relatively distributed, this coding simply
takes a.D. 1800 as point zero rather than the year A.D./B.C. Population will
be coded as 0.0001Y. The computations are as follows:

Time Population

Raw Data Coded Data, Raw Data Coded_ Data,

X % X? Xy
1,835 35 210,000 21.0 1,225 735.0
1.849 49 100,000 10.0 2,401 490.0
1.852 52 85,000 8.5 2,704 442.0
1,856 56 50,000 5.0 3,136 280.0
1,860 80 35,000 35 3,600 210.0
252 48.0 13,066 2157.0

ux = 50.4 years; u, = 9.6 people; N = 5.
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The regression constants are computed as usual
g - 2157 — 5(50.4)(9.6) _

13066 — 5(50.4)° -
o =9.6+0.718(50.4) = 45.79

-0.718

Thus, the coded regression equation is
Y =45.79-0.718X

Sample values can now be computed, decoded by reversing the cbdur\u
procedure, and the regression line plotted.

Decoded Deched

When (coded) X is - then (coded) Y must be X Y
40 17.07 1840 170,700
50 9.89 1850 96,900
55 6.30 185656 63,000

The resulting line of regression has been plotted on the scattergram

13.3 ESTIMATING THE ERRORS OF REGRESSION
FOR POPULATIONS

So far we have simply assumed that a linear relationship exists between
random variable X and Y. But the least squares procedure can be applied to
array of N points, whether or not a linear relationship holds; so, it beco
necessary to determine whether or not the regression equation is meaningfu! &
a specific set of data. Consider the following example. 3

Clinical researchers have developed a number of methods to determine
child's age, based strictly upon skeletal evidence. One common source of @
is the Greulich—Pyle Atlas, which presents standardized X-rays of wrist and h
ossification. The X-rays of any living child can be assigned a ‘'skeletal age
comparison with the standards from this Atlas. Data on 52 subadult males
collected by the Denver Child Research Council in order to assess the accuraseg
of skeletal age, and the least squares method was used to fit a line to th
points. Consider these N = 52 observations to be a statistical population
the expected values, the Y, on a straight line?

The first important measure of linearity in a population is known as |
standard error of estimate. So far, we have explicitly assumed that no errors
involved on the X random variable. All the errors of estimation are due
deviations in a vertical (Y) direction. The chronological ages plotted on ¥
13.10 qualify under this model because there are no errors in finding chronolo
ical age; we know this from birth records. The total deviation between the
points and the regression line must be due to errors involved in reading the wi
X-rays. This error is given by Z(Y, — Y;)*. The average error for each poin!
found simply by dividing the summed squared deviations by N = 52, the numt

\
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At Max. Inc. Growth in Height Boys

Skeletal Age

] T T T T T T T T T
11 12 13 14 18 16 yr
Chronological Age

Fig. 13.10 Scattergram of skeletal age against chronological age at the time of maximum
increment of growth for 52 boys (atter Maresh 19871: fig. 5).

TABLE 13.2 Computations for Fig. 13.10.

3 X =730.20 years; IX*=10,334.98 years’
T Y=701.60 years; IY"=0480.44 years”
T XY =19,870.39 years®; N= 52
= 122:20 _ 14 0423 years
52
Py = 70;;0 = 13.4923 years

= 9870.39 — 52(14.0423)(13.4923)
10,334.98 — 52(14.0423)"

a=13.4923 — 0.225(14.0423) = 10.33 years

= 0.225

of independent variates in the population. This new index of average deviation is
known as the (population) mean squared error of estimate, denoted by o¥%.x:

- o 22
o3, = 2V N) (13.5)

The mean squared error indicates the variance for Y, given X. The mean squared
orror of estimate for Fig. 13.10 is o%.x= 0.194 years’. This measure denotes the
degree of variation between the actual population of N = 52 points and the least
square estimates of the regression line, ¥ = 10.33 + 0.225 X. If all the population
puints were to fall exactly on the regression line, then the relationship would be
perfectly linear and o§.x= 0.0. The larger the mean squared error, the greater is
tha deviation from linearity. A strong analogy exists between the mean square
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error of estimate and the population variance: Whereas o accounts for the
variability about a single point (u), o%.x considers the variability about a single
fine, determined by Y = & + 8.

Unfortunately, o« is expressed in squared units, such as years®, cm’ or
grams®. This shortcoming, encountered with the population variance, is rem it
edied by taking the square root of the parameter. Hence, the (population) =
standard error of estimate is defined as

v 2Y-]
Ty.x= \,"—‘E{LIN“—”) (13.6)

The meaning of ov.x is really quite close to that of the population standard
1 deviation. The predictions resulting from a least squares regression line with a =
! small ov.x will be relatively accurate. That is, the Y;, which lie on a straight line, g

satisfactorily describe the observed Y. A large standard error of estimate warns

that the relationship is only weakly linear, and hence description by a straight

line lacks accuracy. When o v.x is small, a knowledge of any X: tells us a great

deal about the corresponding value of Y. When ov.x=0, then ¥, =Y, and the

relationship between X and Y is perfectly linear. i
As with the standard deviation, a useful shortcut computing formuia simplifies

calculation of the population standard error of estimate for regression. Not only

are the computations involved in Equation (13.6) too laborious, but the numerous

subtractions tend to introduce considerable errors of rounding. The following

computational formula is always preferred for finding the standard error of

estimate:

|
Tvox= \[’:Y’ e (13.7)

The only new quantity required by the computing formula is ZY¥?; all the
remaining sums are required to find the regression constants a« and B. The
regression of skeletal age on chronological age is found to have a population
standard error of estimate of

_ [9480.44 — 10.33(701.60) — 0.225(9870.39)
Ty = 52

= 0.482 year

Measuring goodness of fit for regression can be approached in an alternative
method. The average skeletal age of the population of N = 52 pre-adults plotted
in Fig. 13.8 is known to be u, = 13.49 years. The variability about p, is cus
tomarily denoted by the population standard deviation, as

oy = Yi o Y)
i N
Using computing Formuia (4.18), we find that the population standard deviation
for skeletai age is
_ \/2 YZ-[(Z Y))*/N] 9480.44 — (701.6%/52)
e N vV 52

= 0.523 year
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Two estimates of variability in the Y, are thus available: The population standard

igle error of estimate, ovx=0.482 year, and the population standard deviation,
ov =0.515 year. It is clear that the least squares regression line provides a more k-
, or L accurate estimator of the Y, than does the mere standard deviation of Y. The 5
em- Improvement in estimation of the linear estimate over the point estimate can be 3
fon) . expressed as the ratio of the mean squared standard error of estimate, o'}.», to 4
. the population variance, ov’: r
i ] 7
3.6) y e = (13.8) :
dard = The expression k? is known as the Coefficient of Nondetermination, and its 7
ith a meaning should be obvious: k* represents the proportion of variability in the Y
line, < variable which remains unexplained after the nature of the X and Y articulation
@ | has been assessed by o%.x. That is, k* tells us how much variability the
aight X3 regression equation does not “‘account for." When k* is equal to zero (that is, 3
jreat ; ov.x= 0.0), then a perfect correspondence between X and Y must exist because
i the i all the variability in Y can be accounted for by a knowledge of X. This means that
T Y. =Y, for all i. Conversely, when k® equals unity, no relationship exists at all: X
Jifies ' tells us exactly nothing about Y. The Coefficient of Nondetermination for the :
t only example of skeletal versus chronological age is -
;::i‘:; (oo 04820 02023 oo $
or of I 0523  0.2652
This value of k? tells us that the regression of the Y, on X fai/ls to account for o
(13.7) sbout 85 percent of the total variability known to exist in Y,. We could also '
reverse this coin and concentrate upon the amount of variance explained by 1
Jl the regression, as expressed by the Coefficient of Determination (p”):
3. The , i
ilation pi=1—-k?=1 J%,z (13.9) i
The Coefficient of Determination, denoted by the Greek letter p°, is merely the
complement of k2. The above value of k* = 0.849 must have p" = 1.0 — 0.849 =
0.151. The Coefficient of Determination indicates that the regression equation
: accounts for only about 15 percent of the variability in skeletal age. The choice
rnative between k* and p? reflects only one’s philosophy: optimistic (percent explained
plotted by p?) or pessimistic (percent unexplained by k7).
is cus- One further index of interest is the square root of the Coefficient of Determina-
93 tion:
oy 3
: p=Vpi= L & (13.10)
aviation 1
H The symbol p is also known as the population correlation coefficient. This
i maasure, an extremely important index of the bivariate relationships between
: two normally distributed populations, is used in practice considerably more
i-.‘ often than either coefficients of determination or nondetermination. So impor-

tant is rho that Chapter 14 is devoted to discussion of the correlation coefficient.

P
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13.4 LEAST SQUARES REGRESSION AS STATISTICAL
INFERENCE &

Hubert Blalock {1972: 364) calls regression lines the laws of social science Al

else being equal, a knowledge of X sufficiently predicts the behavior of Y. Bu:
anthropologists are accustomed to accepting some rather loosely constructed
“laws,” not only because of the crude measurements, but also because of 1he
general variability of human behavior. Most social scientists freely acknowledge
that while the laws of the physical scientists are quite exact, social anu
behavioral laws must always remain less precise, more fluid, only actuarial i»
nature. It seems that the laws of social science have a built-in degree o!
variability. So, if social scientists indeed seek the "“underlying laws" governing
human behavior, and if regression equations can serve as one expression ol
these laws, how then is the sampling variability in regression to be handled ?

Regression lines have been treated simply as descriptive devices used 1o
summarize populations of bivariate points. The equation Y =7179.6X
13,189,132 describes the quantitative depopulation of California Indians be
tween 1835 and 1860; the expression Y = 3.5X —115.7 describes the relation
ship between stature and weight in a certain physical anthropology seminar; the
equation Y =10.33+0.225X describes the relationship between chronologics!
age and skeletal age in 52 subadults from the Denver area. Used in this manner
regression is a tool which allows anthropologists to fit descriptive lines o
known populations of points.

Accordingly, the indices derived in Section 13.3 were all based upon popula
tions of variates, and Greek letters were used to denote the population
parameters. But regression fulfills a more critical niche in anthropology than
does mere description. Regression lines computed for samples of variates and
the least squares equations used in statistical inference to predict an unknown
parameter seem an observed sample. Regression equations have functioned 1o
this point only in the limited capacity of descriptive devices. Regression can
now be treated as a tool for inferential statistics.

Figure 13.11 illustrates the sampling distribution for the regression equation
For every value of X there exists a distribution of Y, values. The regression
equation estimates one single value (Y;) of these values. The prediction ¥
occurs on the regression line directly above the preselected value on the X -axis
But the actual observed values of the Y variable—denoted simply by Y —coula
lie anywhere on the vertical axis above the given X value, as illustrated in Fig
13.9. The predicted value Y, resulting from the least squares equation is thus
taken as an estimator of the theoretical mean of the distribution of Y, at point x
A different normal distribution holds for every interval along the X-axis. The
scatter of such points depends not only upon the value of Y, (the estimated
mean above X;) but also upon the shape of the population about the line of
regression. If the populiation of points lies close to the line, then the observed
sample of points should also tand rather close to the line of regression.

Section 13.3 introduced the concept of the population standard error of
estimate due to regression. The average error was determined for every Y, in a
population by dividing the sum of squared deviations by the number of points
ov. x is a population parameter, applicable whenever an entire population of
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Fig. 13.11

variates can be observed, but when this complete population is only partly
visible—when this population has been sampled—then the parameter av.x can
be estimated only by an appropriate sample statistic. Let us denote the (sample)
standard error of estimate as Sy x:

Sy .x = (estimate of ay.x) = y/ 2V —;)z (13.11)
n —

Sy x is a sample statistic which functions as do other statistics considered
earlier. The sample standard deviation, for example, was used as an estimator of
the population standard deviation whenever only a sample of size n <N was
available. The population standard deviation, ox, was computed with a de-
nominator of simply N, thereby providing average variability for each variate
within the population. But a slight modification in S« was computed with a
denominator of (m— k), where k denoted the number of degrees of freedom lost
in the act of computing the standard deviation. Because X was required before
Sy could be computed, exactly one degree of freedom was lost, so Sx was
computed with a denominator of (n —1).

A parallel situation holds when the standard error is estimated for regression.
The population parameter was computed strictly as the average squared
deviation per variate pair, with a denominator of N. But to obtain an estimate of
oy x, One must consider the number of degrees of freedom lost due to
computations. In this case, k = 2, which means that two previously computed
quantities are necessary: the regression coefficients « and B. So it is that the
denominator of Expression (13.11) contains (n — 2), whereas the denominator of
oy » 18 simply N.

The population standard error of estimate was computed earlier to be
v «=V12.074/52 = 0.482 year. oy x is a parameter describing a population of




366

52 variates. If the 52 subjects had been considered to be a sample of size n = 52
(rather than a population of size N =52), then the sample standard error of
estimation would properly be

12.074

Sva=\53-2

= 0.491 year

The difference in value between parameter and statistic in this case is virtually
nil because of the large sample size. But in the blood pressure example
(Example 13.1) with N =9, the difference is rather large: S, x— oy .
4117 -3.631=0.486 mm. This discrepancy, apparent in all small samples
causes certain sampling difficulties which will be subsequently considered.

As with most estimators of variability, the standard error of regression |s
based upon deviations about means. But a computing formula is available
which enables computation of standard error of estimate without the necessity
of finding each individual deviation:

2 _ —
SH:‘/?.Y azY-bI XY (13.12)

n-2

This formula is generally preferable to (13.11) because errors of rounding are
minimized.
The confidence limits about a specific regression prediction are given as
confidence limits = Y = tSy (13.13)
where

= 1, (X=X
Sr=Bex \/n FEXZ - XY7n)

for a specific value of X and (n —2) degrees of freedom. The general format of
Expression (13.13) should be familiar: Confidence limits are defined as some
critical region on either side of some mean, this interval being defined by t and
Sy. The t-value is determined as before from Table A.4 by the appropriate level af
significance (95 percent confidence interval, 99 percent confidence interval,
etc.) and also by the number of degrees of freedom, in this case (n — 2) degrees
of freedom. The measure of variability, Sy, is the direct analog of Sz which was
used in earlier confidence limits computations. Just as Sx is the standard error
of the mean X, so is S¢ the standard error of the estimate Y. Remember.that
these confidence limits apply only to the specified value of X and not to the
entire regression equation.

We are now in a position to use the least squares estimate as an inferential
statistic. Let us return to the case of blood pressure among the Surinamese
(Example 13.1). Remember that the informants were considered earlier to
constitute a population of N = 9 variates. The relationship between age (X) and
blood pressure (Y) was described by the standard regression equation:

Y=a+pX=558+1.28X

Suppose now that these same informants are taken to represent a sample of size
n =9, which was randomly selected from the biological population of all
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n=52 Surinamese. (To accomplish such sampling, it would be necessary to indepen-
ror of ' dently draw a single informant from each age group.) The population parame-
) ters are unknown in this situation, and must be estimated by sample statistics.
To keep this new distinction straight, it is necessary to redefine the regression
equation. The regression coefficients « and g are now unknown parameters,
which must be estimated by sample statistics, which we denote as a and b. The
least squares regression equation for samples is thus

irtually
ample 1 Y =a+bX (13.14)
i g The new statistics a and b are defined identically to « and B except that all
;n:;)(;es, - parameters have been replaced by statistics:
sion is X -X)Y-Y) T XY-nXY
railable b= (X 1()?)9 - S X7 — nk® (13.15)
wcessity - = i
i a=Y-bX (13.16) P
iry The symbolism of regression might seem a bit excessive, but this is really i-g
(13.12) 5t necessary in order to keep the descriptive functions of least squares regression T8
from its inferential function. 113
ling are The least squares equation describing the sample of n =9 Surinam infor-
mants is therefore
/en as Y =a+bX =558+1.28X 4
(13.13) The numbers here remain unchanged from Example 13.1, although now a is
taken to estimate a and b estimates . E
How is this regression expression used as an inferential statistic? Suppose § =
that we wish to predict the blood pressure of a ten-year-old Surinamese. The -
regression equation for X =10 yields Y:
el Y = 55.8+1.28(10) = 68.6 mm
as some
by t and Of course nobody should expect that all ten-year-old Surinam informants will
elevel of have exactly this blood pressure, but Y serves as an estimate for the average
interval, blood pressure of ten-year-olds. The sample standard error of regression was
degrees computed previously to be S,.x=4.117 mm, so the 95 percent confidence limits
hich was are given by Formula (13.13):
ard error )
1ber that . confidence limits = Y = t;sSv
e —68.6+2.365(4.117) 1+ + 100 13.0)
sferential ’ ’ ’ 9 1761 -117°/9
rinamese =68.6+2.365(1.5687)
aarlier to = =68.6+3.753mm
e (X)and i
on: By The value of tees was found from Table A.4 listed under (9 —2) =7 degrees of
: freedom. At the 95 percent confidence level, we expect a randomly selected ten-
:; year-old Surinam male to have a blood pressure reading greater than 64.85 mm
sle of size ', but less than 72.35.
on of all 1 Select another age, say, X =6 years. The regression prediction is Yy =
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63.44 mm, with the following 95 percent confidence intervai:

A ———
. o 1 (6.0-13.0)
confidence limits =63.4+ 2.365(4.117) \/9 +—2_1761 ~117%/9

=63.4+2.365(2.311)
=63.4+5.466 mm-

Similarly, the 95 percent confidence interval for X = 20 years is

3 P00 _ 172 N2
. o 1, (20.0-13.0)
confidence limits=81.4+ 2.365(4.117) \/9+1761 —3117%/9

=81.4+5.466 mm

Note that these confidence intervals about every Y. are specific for a given &
The confidence interval for Y =68.6mm (corresponding to X =10) we
+3.753 mm, while those for an age of X = 6 are +5.466 mm. The close: ¥
samples fall to the mean of X (in this case, X =13.0 years), the smaller wilt be
the confidence interval about Y. That is, the predictions become less acoursts
as the given X deviates from X. Note further that because X =6 and X = 20 s
equidistant from the mean age of X = 13.0 years, the confidence intervals &%
identical.

These three confidence intervals have been plotted on Fig. 13.12. The enclosss

90 — Y =558+1.28X
85 —
80 |
€
E 7
[
g
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(o]
o
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S
T 65 —
8
[
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55 T T T 1 X
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Age in Years

F

g. 13.12 Regression of blood pressure and age for Surinam informants (data o
Glanville and Geerdink 1972: table 2).
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s
¢ area represents the approximate 95 percent confidence band for the total
1" regression equation. This band does not parallel the line of regression; rather it
yid pinches in toward the mean and fans out as one deviates from the mean ;
—.E;*. .‘ because predictions about the mean of X are known to be more accurate than e 2
y 1 those some distance from X. Furthermore, note that the confidence band about
o 3 " .
B the regression line does not extend beyond the observed range of the sample
variates.

Ty

ke,

Example 13.3

I Determine the standard error of estimate for the stature-weight data in Fig.
T 137,

The sample standard error of estimate can be found using Formula
(13.12), a method which entails actually computing the deviations between

PR Y

g s .

o & 3 observed and predicted variates.

.

Y
X Y Y=a+bX lY-¥| |Y-¥}

61 98  3.5(61)—115.7=97.8 0.2 0.04

63 107 3.5(63)-115.7=104.8 22 4.84 {

b 65 109  3.5(65)—115.7=111.8 2.8 7.84 ‘
- 67 117  3.5(67)—115.7=118.8 1.8 3.24
69 128  3.5(69)—115.7=125.8 2.2 4.84
20.80

] P -

‘. Substituting into (13.11),
Sy.x= \/‘2"{%82 =2631b

The computing formula allows much easier computation, however, be-
- cause the sums involved are the same as those used in Table 13.1 to find a
d and b.

_ /83,007 — (—115.7)559 — 3.5(36,475)
Syx= 3

- BBy 63

The only new quantity required is Y°. Whenever tables of computations
are framed, one should usually include a column for Y. Even though Y?is
not directly involved in finding the regression equation, this sum is handy
when assessing errors of regression.,
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13.5 ASSUMPTIONS OF LEAST SQUARES REGRESSION

The least squares method has been used for two distinct purposes in 1
chapter: Description and inference. As long as the objective is simply *
describe a swarm of points, the assumptions need not trouble us. It s new
necessary to assume anything about the form of the distribution or e
variability of the Y, over the X, or even to worry about the level of measuromes
implied (Hays 1973: 636). All a least squares description does is treat N dislin:
cases as if they were linear. The regression equation describes the populatios
of points in terms of their tendency to associate in a linear fashion Th.
description is tenable only for the exact N points considered.

But when the least squares method is used to generate inferences abosw
unknown values of Y, then some important assumptions are required:

1. The predictor variable, X, is measured without error. The lavels of X, are i
be arbitrarily selected beforehand by the investigator and do not result from any
sort of sampling operation. There is only one special situation, however (1he
so-called Berkson case), which permits a special sort of error to creep into the
X. As long as the errors on X are strictly resultant from inaccuracies of
measurement or the lack of suitable experimental precision, then least squares
regression can still be valid. That is, if informants are selected for age, a certam
amount of error might result among nonliterate subjects who are truly ignoram
of their age. Or when students are grouped into classes of increasing stalute
there may be some small error due to using a 1 meter tape. Errors of this kind
can be permitted only as long as their magnitude is totally unrelated to ha
magnitude of the variate (see Sokal and Rohlf 1969: 482-483). This sort of arros
occurs on Fig. 13.5. With only this exception, random fluctuation of X is not
permitted in least squares procedure.

2. The samples along the regression line are homoscedastic. Each of ihe
normally distributed populations of Y, above each X must have the same
variance. That is, the oy x for all X are assumed to be equal.

3. A linear relationship must exist between X and Y (or a suitable transforma
tion must be applied; discussed in Chapter 14).

4. Both X and Y are measurable on at least an interval scale.

5. The line of regression applies only within the observed range of the X

6. The Y, for any given level of X must be independently and randomiy
selected from a normally distributed population above X (see Fig. 13.11).

13.6 LEAST SQUARES REGRESSION THROUGH
THE ORIGIN

Situations sometimes demand that specific regression lines must commence o
pass through, the origin of the coordinate graph, and the previous example
(Section 13.1) relating age to the number of annual growth rings serves as »
case in point. The discussion was presented as if one year will always produce
precisely one ring, but this assumption holds true only in the long run. Specifi
trees are known to fail to add rings in some years, or the rings are too indistin« 1
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for detection by dendrochronologists. In trees such as the bristlecone pine,
several trunks often exist. Some of these trunks might be dormant at any one
time, thereby failing to add rings over sometimes lengthy intervals. But despite
the exigencies which introduce error into the simple Y =X relationship, the
regression line should still logically commence at the origin of the graph and
then progress outward (as in Fig. 13.1). When the age is zero, there must be zero
tree rings, regardless of what random errors are introduced by climatic and
physiological factors.

It becomes useful in many such cases to fit a special line of regression which
automatically begins at the origin (0, 0). This is a limited case of the general
regression situation Y =a + bX, in which the Y-intercept is a priori defined to be
a = 0.0. That is, this line of regression is required to intercept the Y-axis at point
zero. So, the formula for the regression through the origin reduces simply to

Y =b"X (13.17)

where b"=ZXY/ZX?. The superscript b” distinguishes the siope computed
from Expression (13.15) for the common slope b.

This simplified least squares estimate can be illustrated in the case of
germinating plant seeds. When planted, a seed has zero height, and time of
growth is also zero. The stalk then progresses steadily through both time and
height, in its inexorable climb upward. Height measurements were taken at odd
intarvals on a single stalk of corn which was growing near Davis, California
(Table 13.3). A regression line can be fitted to these data, using the standard
Y = a + bX method (see Table 13.3), with the following result:

Y =15.3cm+8.23X

where Y is measured in centimeters and X is age in weeks. A series of sample
points can be readily generated from this expression, and the line has been
litted to the actual data in Fig. 13.11. But note that this conventional approach to
regression produces a line intersecting the Y-axis at a=15.3 cm. Even the
rankest urbanite must surely recognize that no hybrid, regardless of its vigor,
could possibly begin growth with a height of 15 cm! Although the least squares
fit has adequately minimized Z(Y — Y,)’, the resulting equation produces sub-
stantively ridiculous results.

A more appropriate regression line would commence at the origin, thereby
denoting zero height to a newly planted corn kernel. Taking the Y-intercept a
priori to be a=0.0, the regression Formula {13.17) is readily applicable. From
the data in Table 13.3, the proper slope is found to be

. EXY 14,600
b" =337 =593 = 17

The new regression equation is thus
Y=0"X=817X

Sample values have been computed from this new equation and plotted in Fig.
13.13. The two lines of regression are nearly paraliel, the difference in slope
amounting to only (b”"—b)=9.17-8.23 =0.94 cm increase per week. But the
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TABLE 13.3 Observations on one stalk of
corn near Davis, California.

Age, weeks Height, cm

X Y e XY
4 56 16 224
8 81 64 648

12 110 144 1,320

14 130 196 1,820

17 150 289 2,550

20 172 400 3,440

22 209 _484 4,598

97 908 1593 14,600

X =13.9weeks; Y =129.7cm; n =7.

Regression by standard least squares
methods:
bh— 14,600 - 7(13.9)(129.7) _ 8.23
- 1593-7(13.9)° )
a=129.7-8.23(13.9) =153

Then

Y =15.3+8.23X

Regression through the origin:

14,600
b ="Jge3 ~ 217X
Y=917X

15.3 cm difference in the Y-intercept causes a rather wide difference between
the actual paths of the lines.

X, Age in weeks

Y, Height in cm 5 10 15 25

¥=153+8.23X 565 976 138.8 2211
Y=917X 499 917 1376 2293

Difference 6.5 59 1.2 8.2

The difference between the two methods of regression can also be illustrated |
by comparing the sample values from each equation. Both regression lines pass
through the sample means, so the discrepancy between predictions becomes
worse as the samples diverge from the mean values. .

Each prediction method possesses certain advantages. The initial equation of
least squares is more accurate, providing the exact minimum value of the tots
error of estimate. So, when predicting a single occurrence of Y from an X —How
tall will the corn be in 15 weeks?—the standard least squares method w
provide superior results. But, while introducing a somewhat higher total error of
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250—‘
Y=917X
200 | ¥ =15.3+8.23X
= 150
=
= - (X, Y)
o
D
T
100 —|
[ ]
50 —|
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0 2 4 6 8 10 12 14 16 18 20 22 24 26
Age (in weeks)

Fig. 13.13 Regression of corn height and age, plotted by least squares and through-the-
origin

estimate, the regression through the origin produces a graphic solution which is
more acceptable in terms of overall substantive implications. The decision as to
which method is best will depend only upon the situation at hand rather than
upon abstract mathematical properties.

13.7 LEAST SQUARES REGRESSION OF Y ON X
VERSUS REGRESSION OF X ON Y

Care has been taken to restrict discussion to the "regression of Y on X.” The X
values have been taken as the predictor variates, fixed at predetermined values.
Y has been the predicted variable, presumably randomly selected from the
population of points above each X. Thus, both the mode of sampling and the
substantive predictive interest serve to distinguish X from Y in the regression
model considered so far. But circumstances will arise occasionally in which it
becomes necessary to reverse the relationship and attempt to predict values of
X, given the Y. A new regression equation would thus be involved:

X=c+dyY (13.18)

These new regression coefficients correspond to the X-intercept and slope,
except that the quantity =(X, — X|)* has been minimized.

When the resulting line for Equation (13.18) is plotted, it will almost never

correspond exactly to the line produced by ¥ = a + bX. In fact, as long as error is
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present on either variable, different lines will always result. Only when all poinits
lie exactly on their lines of regression will the two lines coincide. That is, o1/,
when I(X, — X)* = Z(Y, — ¥,)*= 0 will a single regression equation apply for bat!
X on Y and Y on X. Extreme caution is in order whenever one attempts 1«
tamper with the predictor-predicted relationship in regression, Sokal and Roh
(1969:446-448) have discussed methods for predicting X from a given ¥

including a method to compute a confidence interval for this inverse predictinon
But more often, however, the assumptions of least squares regression wiil not
be satisfied in such cases, and a second regression method will prove a mure
effective means of prediction.

oo ;_;_ LR - ‘4

13.8 MODEL Il REGRESSION

The regression method discussed so far has been based upon the assumptions
listed in Section 13.5. Least squares methods are especially well suited fos
controlled experimental conditions in which the predictor values—the X,—can
be artificially “‘fixed”” by the investigator. Errors on the X variable are thereby
eliminated. Now we must consider a second method of fitting a regression line.
called Mode/ II. Under Model Il the X variable is no longer fixed. The X, are
randomly selected in a manner identical to selection of the Y, variates. In fact
the assignment of the labels “'predictor’” and *'predicted" in Model Il regress.on
is merely for convenience because no intrinsic difference is necessary lo
regress X on Y or Y on X under the Model Il method of regression.

When using the least squares procedure for estimation, it was necessary to
assume that the Y; were normally distributed for every X.. No assumptions ware
necessary regarding X except that the level of measurement was interval scule
The sampling distribution of Model | (least squares regression, Section 13.2)
was depicted in Fig. 13.11. But Model Il methods of regression consider X and ¥
to be equivalent variables. The Y, must be normally distributed above the X, and
the X, must likewise be normally distributed across the Y. Because both X and ¥
are assumed to be independent and normally distributed, the population
distribution is known as bivariate normal. To visualize this configuration, it is
necessary to conceive of a very large number of datum points stacked about the
intersection of ux and wy. Of course not all points will land exactly on the two
means, so random errors will distribute the points farther and farther from this
intersection. The greater these random errors, the more dispersed are the
datum points. The computer-generated diagram in Fig. 13.14(a) shows that, in
three dimensions, the bivariate normal distribution is bell-shaped. As long as the
X and Y are measured on identical scales, the bivariate normal mound tends lo
be symmetrical. When differing scales of measurement are involved, or
whenever correlation between X and Y is strong, the bell-shape becomaes
distorted into a more elliptical shape [see Fig. 13.14(b)]. Both the Modol Il
regression and the correlation coefficient r (to be considered in detail in
Chapter 14) assume that the X, and Y, are randomly sampled from such »
bivariate normal population distribution.

Least squares models can, of course, be used to fit a line describing »
bivariate normal distribution, but because of the errors on X, inferences fiom
that line are not valid. Probably the best technique for fitting a line to random
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X
(b)

Computer generated frequency diagrams illustrating the bivariate normal

distribution. The parametric correlation between variables X and Y in Fig.

13.14(a) is equal to zero, while in Fig. 13.14(b), p = 0.9 (after Sokal and Rohlf
1969: figs. 15.1 and 15.2).

samples of X and Y is Bartlett’s Three-Group Method. The estimates of the
parametric regression coefficients are quite accurate, but an even greater

e

~ advantage is that Bartlett's method is extremely easy to compute.
e Originally introduced by Bartlett in 1949, this regression technique involves a
:E few simple steps:

1. Rank the variates into descending order on one of the variables; since both
variables have been randomly sampled, assignment of X and Y is arbitrary.

2. Divide the ordered array into thirds. Should the number of (X, Y)) pairs not
be a multiple of 3, then arrange the categories so that the first and third
groups are of the same size.

3. Compute the grand means X and Y as usual, and then also find the
subgroup means for the first and third groups (X,, ¥, X5, Ys).

4. The slope of the Model Il regression equation is given by

pr=Yom 1 (13.19)
Xs— X,

Following Sokal and Rohlf (1969), the regression coefficients for Model Il
will be denoted as a’ and b’ to distinguish them from their Model !
counterparts.
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5. The Y-intercept is given by
a'=Y-b'X (13.20)

The resulting equation provides the “best fit" when both variables have beer
randomly sampled. This is not a least squares regression, so special methods
are required for significance testing and confidence interval computations. The
following example illustrates Bartlett’'s method of regression.

Like many anthropologists, | spend a good deal of my time doing fieldwork
which generally entails camping in some fairly remote spot for manths on end
One summer, when | was excavating Gatecliff Shelter in central Nevada, | found
myself lolling about the evening campfire, listening to the crickets and watching
the sagebrush grow. The crickets reminded me that | read somewhere that
crickets chirp in response to the temperature: The colder the night, the less the
crickets chirp, until they finally refuse to sound off at all in freezing tempera-
1 tures. | mentioned this astounding little piece of trivia to my crew membars,
and they must have been as desperate for entertainment as | was, be-
_ cause we all commenced counting cricket chirps to see how cold it was, Of
& course none of us knew the magic formula for converting chirps to temperature,
! s0 we decided to derive our own formula.’ We performed the counts off and on
throughout the night and the following morning, and our results are tabuiated in !
Table 13.4.

= Rl el

e

TABLE 13.4 Field Data for cricket chirps from Monitor
Valley, central Nevada.

Number of Chirps  Temperature,
per Minute °F
X Y

Loty a;-q'.‘,-_ﬂ

v

in o

47 50
61 56

P

72 57

78 57
93 63
106 67

68
73

110
122

132

X =821/9=91.22; ¥ =561/9 = 62.33.

*For the uninitiated, counting cricket chirps is not as easy as it might sound. Some of the critters &«
boldty sounding off for all to hear, but others—periiaps the younger crickets—are squeaky and difficun

hear. We finally devised a method to reduce the error in our counts: three of us counted the same chi o
for 15 sec, but the episode was recorded only if two of us agreed on our count.
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The problem was this: Given the number of cricket chirps per minute (X), find
the equation which will predict temperature in degrees Fahrenheit (Y). In this
case, both the Y; and the X, have been sampled rather than arbitrarily selected;
thus, the least squares approximation is invalidated. As long as the populations
of cricket chirps and temperature are distributed in bivariate normal fashion,
Bartlett's method of regression is appropriate. The first step in finding the magic
formula for using the cricket’'s "'vocal thermometer” is to reorder the data into
ascending order of X, and divide this array into thirds. The necessary means are
computed in Table 13.4, so a’ and b’ are computed as follows:

b, - !3_ ’:1 - 70.33“ 54.33 - 0‘2609

X;— X, 121.33-60.00

a'=Y-b'X=6233-(0.26)91.22 = 38.61
Rounding the computed values of 2’ and b’ to quantities more suitable for field
usage, the final prediction equation is thus

Y =39+0.26X

A few sample points must be computed in order to fit this line to the
scattergram:

Chirps per minute (X): 50 100 150
Temperature °F (Y): 52 65 78

The data and the best fit line appear in Fig. 13.15. Note that the line determined
by Bartlett's Best Fit Method not only passes through the subgroup means, but
also through the grand means X and Y.

80 — ¥ =309 +0.26X
70 — .
£ 0 |
@
2
™
g e ®
E
3 50 —
40 —
30 T T —T T T T 1
0 20 40 60 80 100 120 140

Cricket Chirps per Minute

Fig. 13.15 Magic formula for connecting cricket chirps to temperature.

.,.u-“hl.- -
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Because Bartlett's method does not assume fixed effects on X, the predictio:
equation for X from Y is simply the reverse of Y from X. If we had wished U
predict the number of chirps for any particular temperature, the equation woul:
be readily found as follows:

pr = Xs= X, _ 121.33 - 60.00

= =3.833

Y.— ¥, 70.33-54.33
a’'=X—-b'Y=91.22-3.833(62.33) = —147.7
X =3.7Y-148

Note that this revised equation will still predict the above sample values.

We noted above that Bartlett's method of finding the best-fit line has the
distinct advantage of considerably easier computations than the least squares
method. Unfortunately, this computational ease is more than offset by the
difficulties in finding the confidence limits to Bartlett's line of regression. The
interested reader is referred to discussions in Simpson, Roe, and Lewontin
(1960:233-235) and Sokal and Rohlf (1969:483-486) for the appropriate
methods.

The standard error of estimate is also invalid when Bartlett's Three-Group
Method is used. The best measure of strength of linearity is the correlation
coefficient r, which is discussed in Chapter 14.

Inference from Model Il regression makes the following assumptions”:

1. Variables X and Y are assumed to be in bivariate normal distribution (see
Fig. 13.12).

. A linear relationship must exist between X and Y.

. Both X and Y are measurable on at least an interval scale.

. The line of regression applies only within the observed range of the X

SN

*Some confusion seems to exist about the topic of inference from linear regression, not only among
the users of the technique but also among mathematical statisticians as to just which methods o
regression are applicable to which empirical situations. The advocates of a hard line approach 1o
regression restrict the true least squares method (Model | regression) to cases in which the values al X
have been rigidly predetermined, as in laboratory situations or agricultural field experiments. Although
a certain degree of error might creep into X through faulty observation, the variable X can still be
considered to be “‘fixed" as long as it has not been sampled in the conventional sense. Some less
rigorous techniques of regression are available for use whenever the variable X has been sampled
rather than selected. Examples of this hard approach to regression are found in Sokal and Ron!
(1969), Hays (1973), Bliss (1967), and Dixon and Massey (1969).

A second perspective—| hesitate to term the soft line—holds that the mathematically valio
distinction between fixed and random effects on X has little relevance to actual application of
regression methods. To paraphrase one such advocate, the hard approach makes good mathematics
statistics but rather poor science. This view is held by Simpson, Roe, and Lewontin (1960), who argus
that the Model | regression techniques can be applied to X variables of any sort (fixed or random), s
long as measurement is interval scale or better. The distinction is often made between the prediciive
(functional) and the descriptive (structural) purposes of regression equations.

Finding myself at the crossroads of this dilemma, | have opted for the hard-line approach 1o the
related topics of regression and correlation. Models | and Il regression methods are presented In »
format following Sokal and Rohlf (1969), among others. Both extreme positions are represented in 1he
recent literature of anthropology. | personally remain undecided about the efficacy of totally ignoring
the mathematical strictures for fixed effects on X; and, in addition, once the more rigorous methods of
regression have been mastered, then one is in excellent position to select a hard or soft posture at will
depending upon the particular applications at hand. That is, once the two models of regressicn e
understood, then one is free lo select methods from a position of strength and knowledge rather thas
by mere dogma. The soft position—at least at an introductory level—lacks this flexibility.

¥
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Example 13.4

While analyzing the archaeological findings at Fort Michilmackinac, Lewis
Binford made the interesting observation that kaolin pipestems can be
used to date historic archaeoclogical sites. It seems that during the
seventeenth and eighteenth centuries, the average diameter of these
pipestems decreased in a remarkably consistent fashion. The relationship
between site age and stem-bore diameter has been assembled by
Heighton and Deagan (1971: fig. 1) for the 12 colonial archaeological sites
tabulated below.

Pipestem

Site Age, a.D. Diameter; 1/64 in.
Williamsburg (Coke Garret 1) 1757 4.62
Clay Bank 1695 6.11
Tutter's Neck, Va. (Pit A) 1706 5.82
Silver Bluff, S.C. 1748 4.91
Ft. Frederica, Ga. 1743 4.9
Archer Cottage, Yorktown 1769 4.31
Ft. Michilmackinak 1768 4.55
Ft. Michilmackinak Barracks 1775 4.07
Warrasqueoi 1688 6.50
Brunswick Town 1751 4.88
Ft. Necessity 1754 4.4
Spaulding's Lower Store 1770 4.63

Find the line of regression which allows age predictions of an archaeologi-
cal site from its mean stem-bore diameter.

1800

¥Y=1932.4 - 37.91X

1750

=
2 1700

1650

1600 T | T |
40 45 5.0 55 6.0 6.5 7.0
Pipestem Diameter (in gith")

B TP,

[

Fig. 13.16
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The least squares approximation does not apply to this case because
neither variable is "'fixed’ in a statistical sense. Specifically, we wish to
predict the age of archaeological sites (Y) from knowledge of the
pipestem diameters (X), but both X and Y are random variables. The data
must first be plotted to determine whether a linear description makes
sense. Since these variables appear to be roughly linear in fashion,
Bartlett's Model il regression can be used to estimate the best fit.

X Y X y? XY

4.07 1,775 16.56 3,150,625 7,224.25
4.31 1,769 18.58 3,129,361 7,624.39
4.4 1,754 19.36 3,076,516 7,717.60
4.55 1,768 20.70 3,125,824 8,044.40

4.62 1,757 21.34 3,087,049 8,117.34
4.62 1,770 21.44 3,132,900 8,134,91
4.88 1,751 23.81 3,066,001 8,544.88
4.91 1,743 2411 3,038,049 8,558.13

4.91 1,748 2411 3,055,504 8,582.68
5.82 1,706 33.87 2,910,436 9,928.92
6.11 1,695 37.33 2,873,025 10,356.45
6.50 1,688 42.25 2,849,344 10,972.00

The grand mean and group means must be computed:
59.71 20,924

% =22 408 ¥ =S5 = 174367
%, =133 _ 433 X, =234 _584

4 4
7, = ELEQ =1766.50 Vi= 93—5’3 = 1709.25

The Mode! |l regression equation constants are thus

, _1709.25-1766.50
b= 584—433 o791

a’'=1743.67 — (—37.91)(4.98) = 1932.4
Y =1932.4-37.91X

The following sample values indicate how this regression equation can be
used by the historic archaeologist.

When the mean The estimated age

bore diameter is - - - of the site is
4.25 A.D. 1771
5.00 A.D. 1743
6.00 A.D. 1705
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SUGGESTIONS FOR FURTHER READING ; i
to | '
ne | Bliss (1967: chapter 13) g g 1
ta | Simpson, Roe, and Lewontin (1960: chapter 11) : ;}
es | Sokal and Rohlf (1969: chapter 14) | 8
n, {

EXERCISES

13.1 Given the following data:
X Y :
-2 0 .b.
1 3
3 7 4
4 10
I 18 '
“.
(a) Find the equation of the least squares line describing these five ' 3
points.
i (b) Draw the scattergram and fit the regression line.
3 (c) What is Y when X =27 iy
. ' (d) Find the population standard error of estimate. :
: 13.2 Given the following data: ;
it X Y iR
2 18
5 12 3 .
9 7 il
10 2 4
(a) Find the least squares equation describing these data.
(b) Draw the scattergram and regression line.
(c) Find the population standard error of estimate.
*13.3 Given the following variates:
£ X Y
' 10 12
i 17 26
can be § 20 42
g 16 22
: 18 26
23 45
29 50
8 6
13 20
(a) Find the least squares line describing these points.
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13.4

*13.5

(b) Use Model Il techniques to determine the regression equation
(c) Plot both equations on a scattergram.
(d) What assumptions are necessary for each method?

By studying radiographs of the fetus, McKim, Hutchinson, and Gavan
(1972) derived the following regression equation projecting prenatal ags
from the length of the femur in the unborn rhesus monkey:

Y =50—0.35X

where Y is “‘days prior to birth"” and X is ‘‘femoral length in millimeters

(a) Graph this equation.

(b) When the femur is 20 mm in length, about how many days prior 1
birth is the fetus?

(c) How many days prior to birth is a fetus with a 40 mm femur?

Return to the data from the Grasshopper Ruin (Exercise 10.7).

(a) Find the equation which allows prediction of hearth size from @&
knowledge of room size for the later rooms.

(b) If another room from the early rooms is found to be 20 m*, how large
would you predict its firehearth to be?

(c) What measure can we use to determine the accuracy of this predie
tion?






