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14 Correlation
Coefficients

@ /f experimentation is the Queen of the Sciences, surely statisti-
cal methods must be regarded as the Guardian of the Royal
Virtue—M. Tribus

14.1 CORRELATION IN A SAMPLE

The notion of correlation was briefly introduced in Section 13.3. The population
correlation coefficient p was defined as the square root of the Coefficient of
Determination. But p applies only to correlation within a population. When a
sample is involved, a new statistic, called r, must be considered. Therefore, r
estimates p from a sample of variates. Originally derived by biometrist Kari
Pearson, the sample correlation coefficient is also commonly called the Pearson
Product-Moment Coefficient. The correlation coefficient (and its nonparametric
equivalents) plays such a critical role in bivariate statistical analysis that
correlation must be given especial attention in this chapter.

Consider the scattergram in Fig. 14.1. Coordinate systems can help in
assessing the degree of scatter in a swarm of points. The coordinates describe
four equal quadrants, labelled A, B, C, and D. If the swarm of points is randomly
distributed about their sample means—in this case, about the origin of the
graph—then the number of points should be roughly distributed throughout all
the quadrants. But if a linear relationship is present, then the points will be
distributed unequally among the four quadrants. A positive linear relationship
produces a distribution in which quadrants A and C contain more points than
would quadrants B and D. Similarly, a negative linear relationship places an
excess of points in quadrants 8 and D. So the relative abundance of points
among the four quadrants can serve as a rough indicator of linearity; Fig. 14.1
illustrates this simple principle.

Now consider the scattergram in Fig. 14.2, and assume that these datum
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points (X, Y) represent random samples from a homoscedastic bivariate normal
population. If the intention were to describe merely the form of the relationship
between X and Y, then a descriptive line could be fit to these points, using
Model Il regression (Section 13.8). But let us set aside the question of form for
the moment and consider only the strength of the linear relationship between X
and Y. Following convention, the origin of the X-Y coordinate system is set at
(0,0); any point can be located on Fig. 14.2 merely by describing its vertical and
horizontal relationship to the zero origin. This coordinate system can be
redefined (as in Fig. 14.3) such that the origin is placed at the two sample
means, X and Y. Each of these new axes can be labelled X' and Y" to distinguish
them from the original axes X and Y which originated at (0, 0).

Any individual datum point can now be located precisely on the coordinate
system by measuring its horizontal and vertical distance from the origin. When
the origin was taken as zero, then any point is exactly (X; —0) = X; horizontal
units from the origin and (Y, —0) = Y, vertical units above the origin. With the
origin redefined as X and Y, the distance to the origin becomes (X, —X)
horizontal units and (Y, — ¥) vertical units. The values of the product between
these two distances, (X, — X)(Y, — Y), provides a general distance figure from the
point to the graph origin. When a point falls within quadrant A, then the product
(X, — X)(Y,— ¥Y) must be a positive number (Fig. 14.3). Similarly, points in
quadrant C must also have a positive product, while the points in B and D must
always produce a negative product of deviations.

This reasoning can be generalized from a single point to the entire swarm of
points on a scattergram. A strong, positive linear relationship produces a
positive value of the sum of products, which is (X, — X)(Y, — Y), because most
of the points must lie within quadrants A and C. The larger this sum, the
stronger must be the positive linearity between X and Y. Similarly, a negative
linearity produces a larger negative value for Z(X; — X)(Y. — Y). No linear trend is

* (X = X)(Y, = V)= (X ~X)Yi-¥)=+
‘5
B A
(X7 .
¢ D
(X=X, -¥)=+ (X, - )Y, - V)= -
Fig. 14.3
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evident whenever the sum of the products of the deviations from X and Y is
Zero.

So, clearly, the sum of deviations is a serviceable indicator of the strength of a
bivariate linear relationship, but this index is hampered by a couple of limita:
tions. The sum obviously increases as the number of points, n, increases, and
therefore the sum of deviations is useful only as long as samples of identical size
are to be compared. Moreover, the sum is expressed in the units of analysis—
that is, the diverse units of the scales of X and Y—rather than in simple absolute
units. The initial difficulty is remedied simply by dividing the sum by n
(X — X)(Y, — Y)/n expresses the average deviation about X and Y, thereby
stabilizing the sum against fluctuations in sample size. Each individual deviation
can then be divided by the sample standard deviation in order to cancel the
actual units of analysis; a similar procedure was used to derive z, the standar-
dized normal deviate. This modified indicator measures the dispersion of a
bivariate normal sample about its individual means X and Y,' as follows:

1o X=X) (v.-¥
r= n E S_x Sy
(X = X)Y. - Y)n
VEWX — XY, = Y /(n—1)

(14.1)

r =

The sample correlation coefficient r is simply an alternative algebraic form for
estimating p, derived in Section 13.3. This form in Equation (14.1) is preferable
because it illustrates just how affinity can be computed over a series of bivariate
pairs.

The correlation coefficient has a number of desirable properties:

‘1. A value of p =0 (estimated by r) indicates that no linear relationship exists
between two variables. They are linearly unrelated.

2. The magnitude of p (estimated by r) denotes the strength of the linear
relationship. Large absolute values of p indicate a close relationship, while
smaller absolute values of p indicate that X and Y are only weakly related.

3. The sign of p denotes the direction of the relationship.

4. The maximum value of p = +1.00 indicates a perfect positive correlation
(larger X means larger Y) and the maximum negative value of p =—1.00
indicates a perfect negative correlation (larger X means smaller Y).

The sample correlation coefficient is very closely related to the sample
regression constants in a mathematical sense. The correlation coefficient is
simply the slope constant b multiplied by the ratio of the sample standard
deviations of X and Y:

Sx
= == 14.
r by x S, ( 2)
Because the regression constant b is expressed in the specific units of analysis
(“'so many unit changes in Y for every unit change in X'’), multiplication by the
standard deviations will “‘standardize"” the slope into a dimensionless statement
of correlation. But this intimate relationship between r and b should not be

'For large samples, the difference between n and n — 1 becomes negligible, so they simply "cancel
in Expression 14.1,
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taken as meaning that they are equivalent expressions, to be interchanged at
will. They rely upon some rather different assumptions, and the methods of
correlation and regression fulfill rather different needs in social science.

14.2 COMPUTING THE CORRELATION COEFFICIENT

A ‘“‘computing” method for finding r is given in the following computing
formula: SKV — ¥

r=— Gl - (14.3)

VI(EX? - nX?)(EY? - nV?)

Like most of the computing formulas, Expression (14.3) avoids the difficulties of
actually determining the individual deviations about the sampie mean. Some
examples should clarify the meaning and computation of the correlation
coefficient.

| employ a number of students in the archaeological lab of the American
Museum of Natural History in New York City. The bulk of their duties consists of
measuring and classifying archaeoclogical artifacts. One task, for instance,
involves taking ten measurements on all of the projectile points processed
through the laboratory. Aside from the general grousing | have come to expect
from such vacuous duties, a couple of students made a seemingly legitimate
protest. "Why do we have to measure length, thickness, and weight for each
artifact,” they asked, "'when we all know that the three variables are functions of
but a single variable—size. Because most of the artifacts are broken, only
thickness can be measured with accuracy; both weight and length are generally
only estimates from broken artifacts. Why must length and weight be deter-
mined when we already know thickness?”

The gquestion set me thinking just how closely thickness, weight, and length
were really related in these artifacts. This is an issue of correlation: If length,
thickness, and weight are highly correlated, then they are also redundant, and
one measurement will serve just as well as three. So | told the students that if
they could demonstrate adequate correlation, they could junk the redundant
measurements.

They began first with the thickness and weight variates for eight Elko Eared
projectile points (Table 14.1). Their first step was to plot the data on a
scattergram (Fig. 14.4). The symbols X and Y have been assigned arbitrarily in
this case because no predictions are involved. A linear trend appears to be
evident, but there is also a good deal of scatter. How correlated are weight and
thickness?

All the necessary terms have been computed in Table 14.1, and from Formula
(14.3) the coefficient of correlation is found to be

o 155.49 — 8(5.10)(3.76) e
V[(212.80 - 8(5.10)°])[(114.61 — B(3.76)°]
=+0.78

The value of r = +0.78 is a rather high value, demonstrating a certain validity of
the students’ complaints. Weight and thickness are indeed quite redundant, and
should produce quite similar results in any typological scheme.
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TABLE 14.1 Comparison of weight and thickness
measurements for eight Elko Eared pro-
jectile points from Reese River, central
Nevada (Thomas 1971a)

Thickness, Weight,

cm grams
X Y Xy & Ve
5.0 3.3 1650  25.00  10.89
46 3.5 16.10 2116 12.25
4.8 4.0 19.20 2304  16.00
5.8 3.8 2204  33.64 14.44
5.3 4.2 2226 2809  17.64
4.3 35 1505 1849  12.25
6.7 45 3015 4489  20.25

43 B3 1419 1849  10.89

40.8 30.1 15549 21280 114.61

X =40.8/8=510; Y =30.1/8=3.76.

40 ®

35 ® o
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Fig. 14.4 Thickness versus weight of eight Elko Eared points from Reese River, Nevada
(data from Thomas 197 1a).
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.Example 14.1

According to population ecologist Paul Ehrlich, ““the single most impor-
tant factor in a country’s reproductive rate is the motivation of the people
toward the regulation of family size...if a couple is determined not to
have more than two children, they usually will not, regardless of whether
there is a birth control clinic down the street” (Ehrlich and Ehrlich 1972:
318).

Do the following data from seven Latin American cities support Ehrlich’s
contention that the actual birth rate is correlated with social norms
regarding ideal family size?

Desired family sizes of women in seven Latin American cities.

Average Number 1971 Birth

of Children Rate of
Latin American Cities Wanted Country
Bogota, Columbia 36 44
Buenos Aires, Argentina 2.9 22
Caracas, Venezuela 35 41
Mexico City, Mexico 4.2 42
Panama City, Panama 3.5 41
Rio de Janeiro, Brazil 2.7 38
San Jose, Costa Rica 3.6 45

As in all correlation cases, assignment of X and Y is totally arbitrary:
The number of desired children is assigned to X and the 1971 birth rate is
Y:

X Y X? & Xy

36 44 1296 1,936  158.40
2.9 22 841 484  63.80
35 41 1225 1,681  143.50
42 42 1764 1,764  176.40
35 41 1225 1,681 14350
27 38 729 1444 102.60
36 45 1296 2025  162.00
240 273 8376 11,015 950.20

273

=3.43 Y= 7 = 39.00

o 950.20 — 7(3.43)(39)
V[(83.76 — 7(3.43)°][(11,015) — 7(39)7]
= +0.607

These data clearly support Ehrlich’'s contention that norms are posi-
tively related to actual birth rate, at least in Latin America.
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14.3 THE MEANING OF CORRELATION AND REGRESSION
USE AND ABUSE

Many practicing anthropologists feel perfectly at home with most statistical
techniques, yet they experience a certain trepidation when faced with the issues
of correlation and regression. The computations are so closely related arithme!
ically that one is often tempted to compute both r and the regression equation
for all sets of bivariate data, in hopes of covering all the bases. But these 1wo
techniques are hardly interchangeable, and their misuse is notoriously common
throughout the literature of anthropology. It is difficult to know which statistic is
more abused, the chi-square test or the regression-correlation duo. Neithes
misuse is particularly amusing.

It seems that relatively few problems arise when the regression and correla
tion statistics are employed in purely descriptive fashion. The population
regression coefficients readily describe the form of the linear relationship, while
the parametric correlation coefficient p measures the degree of dispersion
about this regression axis. But difficulties seem to arise when samples are
generated and then inferences extended back to the parent population. Two
intersecting criteria must be considered whenever such bivariate samples are lo
be analyzed: (1) the precise objective of analysis, and (2) the exact nature of the
variables which were sampled. Table 14.2 summarizes the following discussion

Both regression and correlation assume at least interval scales of measure
ment. When either X or Y fails to qualify as fully interval, then one must turn te
one of the nonparametric techniques considered later in this chapter. Aslong as
the values of X are fixed—that is, whenever the levels of the predictor variable
are under the control of the experimenter—the least squares approximation of
regression should be used to describe the precise relationship between X and
Y. Least square regression permits the analyst to predict the probabilistic
outcomes of Y, given information about the predetermined levels of X. This
agreeable situation occurs most frequently in disciplines such as psychological
experimentation, educational testing, and agricultural field studies. The inves
tigator predetermines a value of X and then measures the attendant responses
on Y. The X variable really has no ‘distribution” in the strict sense, so

TABLE 14.2 Relationship between correlation and regression (after Sokal and RohM

1969: 497).
Purpose of Investigation
Nature of Selecting Determine dependence Establish strength of
X, and Y, relationship (prediction) association (interdependence)

X fixed, Y Model | regression Meaningless, except as
random (least squares) measure of goodness of
fit between data and line

of regression (use r¥

Both X and Y Model Il regression Correlation coefficient

random (Bartlett's method)
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assumptions are not required about the variance of X. X has been selected
rather than sampled.

How secure are these predictions based upon Model | regression? To
determine the variability of ¥ about an arbitrary X, the amount of variance
"accounted for’’ by X must be compared with the total variability in Y. There is
no variability in X. The Coefficient of Nondetermination was previously defined
as

_ variability in ¥ not accounted for by X

k?=1 - :
total variability in Y

2
XY
:‘l...

s7
When k*=0, then the variability in Y is completely determined from a know-
ledge of X.

The accuracy of Model | regressions can alternatively be expressed as the
Coefficient of Dispersion, defined earlier as r>= (1 — k*). Whenever r’=1, the X
variability is said to account for the total variability observed in Y. But the
correlation coefficient r is meaningless in the contexts of Model | regression.
The sample correlation always assumes a bivariate normal distribution, which is
clearly never the case when levels of X are fixed. Lacking the bivariate normal
distribution, one cannot infer p from r. Thus, although the correlation coeffi-
cient is computationally related to r* r is merely the square root of the
Coefficient of Determination—these two statistics are grounded in very different
assumptions. The statistics r and r? are not interchangeable for Maodel |
regression; r° has meaning only when X has been fixed. Furthermore, regres-
sion is a predictive technique for guessing the value of Y given X, while the
Coefficient of Determination provides an estimate of goodness of fit for these
predictions.

A rather different statistical situation exists whenever both X and Y represent
random variables. In general, sampling from bivariate normal populations
implies an interest more in the strength of relationships than in their form. So
bivariate populations are more generally involved with correlation as the basic
analytical tool. The correlation approach applies to the sampling situation,
whereas the (Model 1) regression approach implies a more closely controlled
experimental study. Should one actually need to predict one random variable
from another, then Bartlett’s method (Section 13.8) for curve fitting can be used
lo describe the observed form of articulation between random X and Y. The
labels predictor and predicted are assigned arbitrarily in Model |l because there
15 no structural difference between the distributions of the two variables.

14.4 TESTING r FOR STATISTICAL SIGNIFICANCE

txtreme values of r are relatively easy to interpret. As long as r hovers about
sero, then one can feel quite assured that no substantial degree of correlation
«x5ts between the X and Y populations. That is, r is almost certainly near
ruro. Similarly, as r approaches the maximum values of r=+ 1,00, then linear
orrelation seems a virtual certainty. But because r is merely a statistical
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estimator of p, the sampling errors cannot be ignored. Whenever r assumes an
intermediate value between zero and unity, the correlation coefficient should b«
assessed for statistically significant deviations by chance. A number of nu!
hypotheses can be considered, depending upon the precise research objective

14.4.1 Testing against a Specific p

The most common statistical test for the significance of the sample correlation
coefficient is to determine whether p differs from zero. Are the two variables
correlated?

Hy: p=0 H,: p=0 H,: p=0

Hi: p#0 Hy: p<0 Hi: p>0

This test lauempts to determine if the observed deviation of r from zero is
sufficiently large to represent a rare sampling event. The test can be phrased in
either one- or two-tailed forms.

Observed values of r can be converted to the familiar t-statistic as follows:

g BT i
EGEGTES 4

Two degrees of freedom are lost in computing Expression (14.4), so for any ¢
df=(n —2).

The significance of r can also be tested by using simple distribution tables
The sampling distribution of r is known to vary, depending both upon p and n
For the special case of H,: p = 0, the probability values have been compiled in
Table A.11 (Appendix). Entering this table with (n —2) degrees of freedom, one
can readily determine the critical values of r at the common levels of statistical
significance. This table applies only to the two-tailed case, so the sign of r s
ignored. Whenever direction has been specified—that is, one predicts eithes
positive or negative correlation—the one-tailed probabilities can be found as
simply twice those listed in Table A.11. So the critical value for a directional test
with (n —2) degrees of freedom at a = 0.05 is found under a = 0.10.

Special circumstances sometimes arise in which one wishes to test whether »
is equal to some value other than zero, such as p =0.90 or p = —0.75. Such
testing requires a conversion of r to z (discussed in Section 14.4.2). The
interested reader is referred to discussions in Alder and Roessler (1972
214-215) or Sokal and Rohlf (1969: 519) for the specifics.

Example 14.2

It was determined in Example 14.1 that the correlation between actual birth
rate in Latin America and the ideal family size is r = +0.610. Doe5 this
coefficient indicate that p is significantly different from zero?

We must first assume that the seven examples were randomly generated
from the Latin American population; if Ehrlich arbitrarily selected the best
cases, a significance test is unwarranted. The number of degrees of
freedom in this case are equal to (n —2) = (7 —2) =5. Table A.11 indicates
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that the critical value for @ = 0.01 is r = 0.8745. We must conclude that no
significant difference exists between the coefficient r = +0.610 and p =
0.0 at the 0.01 level.

Note: Here is a case in which a strict, insensitive dependence upon
conventional statistical levels could be misleading. If more cases had been
employed in the study, the results almost surely would have been sig-
nificant. But even granting the small sample size and the lack of
significance, one should probably not ignore so large a value as r =
+0.610, even though it falls short of the tabled value. Ehrlich’s example
simply has too few cases to demonstrate a correlation which is probabilis-
tically significant.

14.4.2 Confidence Limits of r

The statistical confidence limits about an observed correlation coefficient are
sometimes more useful than testing for significance against specific values of p.
Finding the interval about r is complicated by the fact that p must be known
prior to finding the standard error of r. This unrealistic procedure led Sir Ronald
Fisher to derive a second index of correlation, known as Z.?
z=%log.11%’: (14.5)

where log, is the natural logarithm based upon the constant base e = 2.718. As
before, this conversion need not be accomplished every time because the
values of Table A.12 provide ready access to the conversion of r to Z, so the
computations in (14.5) can usually be avoided.

The sampling distribution of Z is known to be approximately normal, with a
standard error approximated by

s =8, = (14.6)

How these two quantities are used to determine confidence limits about r is
illustrated by a worldwide study of cultural patterns of child rearing made
by Barry and Paxson (1971). They reported that the correlation between general
indulgence during childhood and the use of carrying devices for infants (such
as cradleboards) to be r = +0.65 for a sample of 42 societies. What are the 95
percent limits for p?

From Table A.12 we find that the observed value of r = +0.65 converts to
Z = 0.775; an identical value of Z is found by using Formula (14.5). The standard
error of this Z is found from (14.6):

1

7" Vaz-3

“Once again the statistical lerminology conspires against us. Although the log conversion of r is
denoted by Z, do not confuse this “'zee” with z, the symbol used here for the standardized
normal deviate. These two "“'zee’s” have nothing in common.
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The confidence interval about Z is given by standard methods, using the norma!
curve:
confidence interval = Z + 1.960

=0.775+=1.96(0.160)
=0.775+0.314

So the 95 percent confidence intervals run from +0.461 to +1.089. But theso
intervals are still in values of Z and must be converted back to values of r. Agaim
using Table A.12, we find the confidence intervals of r to run between r = +0 41
and r = +0.80. Clearly, this correlation between carrying devices and the
indulgence of infants is positively correlated in the worldwide population. Thal
is, we can be almost certain that p lies betweenr = +0.43 and r = +0.80. In this
case, the confidence interval seems to provide more useful results than would
the t-test against H,: p =0.

The question arises: Since the 95 percent confidence interval does not
include p = 0, is this equivalent to rejecting H.: p = 0 versus H,: p# 0 at the 0.08
level, using (14.4)? The answer is yes. This confidence interval tells us that in the
long run, we can expect to obtain intervals which will contain the (unknown) p
about 95 percent of the time. As with all confidence intervals, an entire range of
hypotheses has been implicitly tested. All null hypotheses suggesting values of
outside the interval +0.43 and +0.80 are implicitly rejected. Null hypotheses
with +0.43 = p =+0.80 are not rejected.

Note further that the confidence limits are not symmetrical about r = +0.65,
since the general distribution of p produces a diminishing effect upon the
confidence limits for the positive values of r. When the correlation coefficient is
negative, the lower confidence limits will be closer to r than will the upper limit

14.4.3 Testing for a Difference between Two p

Two independent correlation coefficients can be statistically compared by
transforming the r into standardized normal deviates. The raw r must first ba
converted to Z by using Table A.12. The standard error of the difference
between two Z is given by

G'z.—z,=sz‘.zz=\/n‘13+nz1_3 (14.7)
The statistical difference between the two Z can be computed as in earlier tests
for differences. Another example from population ecology will illustrate the
computations.

Paul Ehrlich contends that the families of a DC (developed country) generally
come closer to their ideal size than those of the UDC (underdeveloped country)
Ehrlich contends that the UDC generally exceed their desired family size, due o
sociceconomic, religious, and political factors. Example 14.1 determined that
the correlation between number of children wanted and the Latin American
birth rate is r = +0.610. It is also known that the correlation is r = +0.818 for
nine European countries. Assuming the European countries to be DC and the
Latin American countries to be UDC, is the difference in correlations large
enough to support Ehrlich’s hypothesis?
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Let us term the correlation for Europe as ry,, with n,=9. The statistical
hypotheses in this one-tailed test are

Ho: pr=p2 Hi: pi=>po

The one-tailed critical value of the standardized normal deviate, z, is found in
Table A.3 to be 1.64.

The log conversion values of r are found from Table A.12 to be Z, = 1.157 and
Z>=0.709. Let me caution you once again not to confuse the meaning of the
standardized normal deviate (z) with the log conversion of the correlation
coefficient (Z). The standard error for the difference between the two Z
conversions is found from Expression (14.7):

=d 1 T _
O z-2:= J9—3+7-—3_-0645

The standardized normal deviate for the difference is

,.(2-2)-0_1.157-0.709
- Tz-z, B 0645

= 0.695

The computed figure for z fails to exceed the critical value of z = 1.64, so the
null hypothesis cannot be rejected. The census data from Latin America and
Europe fail to support Ehrlich’s contention that developed countries come
closer to their ideal family size than do the underdeveloped countries.

14.5 RANK-ORDER CORRELATION

Measures of statistical correlation always involve pairs of observations; each of
the pairs represents a bivariate random sample of size n. The correlation
coefficient is but one measure of linear correlation, and r is the appropriate
measure of affinity between X and Y only as long as three criteria are met:

1. Both X and Y are at least interval-scale variables.
2. The distribution of Y and X is bivariate normal.
3. Variables X and Y are related in linear fashion.

Use of r becomes suspect when any of these conditions is not met, and this
section discusses two important nonparametric alternatives to the parametric
correlation coefficient. Specifically, these nonparametric alternatives apply
when conditions (1) and/or (2) are not met; the nonparametric methods still
assume a linear relationship. As we will see, the nonparametric methods of
correlation are particularly helpful in analyzing cross-cultural samples which
are so common in today's ethnology.

14.5.1 Spearman’s Rank-Order Correlation Coefficient

Data from the Ethnographic Atlas (Murdock 1967) have been used from time to
time to illustrate various of the statistical techniques. Another source of easily
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retrievable ethnographic data is Human Relations Area Files (HRAF) with central
headquarters in New Haven, Connecticut; the HRAF records are made available
on a subscription basis to over two hundred universities and museums through
out the world.

The physical process of coding requires the analyst to decide whether or not a
given trait is present within a society. Sometimes these decisions are quite easy

to code:

(Col. 1) Regional identity:
Africa
Circum-Mediterranean
East Eurasian
Insular Pacific
North America
South America

(Col. 39) Type of Animal Husbandry -

bovine animals
camels

deer

equine

pigs

other

But many interesting cultural variables are by their nature judgmental in
character, such as degree of anxiety, kind of family organization, intensity of
agriculture or frequency of warfare. Variables of this sort require the coder to
make rather subjective decisions, decisions which tend to vary between ana-
lysts. A common control in coding ethnographic data is to employ multiple
judges, who are unaware of the hypothesis and each of whom independently
codes the same literature. The scores can then be compared to determine the
relative objectivity of the categories.

In one such study, Bacon and others (1965) attempted a rather ambitious
study of drinking behavior throughout the world. Ethnographic literature was
assembled for a large sample of societies, and then raters independently coded
these data into comparable cross-cultural categories. One variable undes
investigation in this study was hostility and resentment of males while drinking.
which was categorized into the following divisions (Bacon and others 19658

340):

Little or no expressions of resentment
Verbal expression of mild resentment such as slight impoliteness
. Moderate quarreling

Serious quarreling

. Quarreling frequently accompanied by physical fighting

. Serious physical combat

Physical combat involving frequent injury to other persons

Every society in the sample was then independently scored by two investigators
(Barry and Buchwald). When their ratings agreed, then the scale was considered
to be relatively objective and hence acceptable. But if the judges disagreed on a
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number of cases, then they knew that the coding scheme lacked the necessary
objectivity and required redefinition.

Suppose that the two judges obtained the following codes for the hostility and
resentment variable:

Judges
Society 1st 2d
Ainu B B
Cayapo D D
Chukchee G G
Cuna E E
Ifugao F F
Maori A Cc

The two judges agreed in all cases except the New Zealand Maori. Is this
single deviation to be expected by chance, or does there appear to be an
inordinate amount of disagreement on the hostility and resentment scale?

The Spearman Rank-Order Correlation Coefficient, designated by rs, is an
index derived to analyze exactly this sort of situation. Originally defined in 1904,
this measure is the earliest of the family of nonparametric statistics based upon
ordinal ranking.® The statistic rs compares the overall similarity of two ordinal
rankings. The two judges' rankings can be considered as rank orderings: Each
society is ranked relative to the others in terms of hostility and aggression.

Spearman’s Rank-Order Correlation Coefficient is defined as

_ 6Ld?
m-n

re =1

(14.8)

where d, is the raw difference between rankings of variate pair i, and n is the
total number of such pairings.* Like r, Spearman’s rs ranges from +1.0 for a
perfect positive correlation to —1.0 for absolute negative correlation.

To compute rs, the societies must first be placed in rank-order for each scale.
Judge A rated the six societies in the following order: (1) Maori, (2) Ainu, (3)
Cayapo, (4) Cuna, (5) lfugao, and (6) Chukchee. Judge B’s results are similar,
except that the Maori and Ainu are placed in reverse order, with Ainu receiving
the rank of 1. The d; are then found by subtracting rankings of judges. These
scales are presented in Table 14.3. The sum of the deviations must always equal
zero, a fact which provides a handy check for errors in either adding or
subtracting the deviations. The d, are then squared and summed, providing Zd’.
Formula (14.8) can now be applied to the results of Table 14.3:

_4_ 82 _, 12
rs=1-g_6~ 1310

= +0.94

“Spearman’s index is sometimes designated as rho, but the simpler r. is used here to avoid
confusion with the population parameter of the parametric correlation coefficient p.
“The derivation of rs can be found in Siegel (1956: 203-204).
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N

Judge's Rankings ;

Society A B d, a’ : 2
Maori 1 2 -1 1
Ainu 2 1 +1 1
Cayapo 3 3 0 0
Cuna 4 4 0 0
tfugao 5 5 0 0
Chukchee 6 6 0 0
id =2

Spearman's rg is interpreted in a manner similar to r, so we see that the e
ranking scales are indeed quite closely correlated. A second, more complicates
example will further illustrate the versatility of rs.

Villages of northern India generally host representatives from some 5 to ¥
endogamous social groupings known as castes. Villagers regard each caste s
higher (or lower) than another in terms of prestige and esteem. The result » &
tightly structured social hierarchy. But a certain amount of disagreemess
generally exists as to the exact social ranking of particular castes. Staniey
Freed, of the American Museum of Natural History, collected an interesting
series of data from the small village of Shanti Nagar, northern India (Fress
1963). Freed interviewed a series of randomly selected male informants. Esen
informant was given a set of movable cards, upon each of which was written the
name of a single caste. Informants were requested to arrange the caste cards &
their appropriate social ordering. One informant, of the Brahman (priest) casts
arranged his cards into the following order: Brahman (priest), Baniya (mws
chant), Jat (farmer), Baigari (beggar), Mali (gardener), Gola Kumhar (poties)
Lohar (blacksmith), Jhinvar (water carrier), Maher Kumhar (potter), N&
(barber), Chamar (leather worker), Chuhra (sweeper). A second informani. &
member of the sweeper (Chuhra) caste, produced the following social ranking
using the same deck of cards: Brahman, Baniya, Jat, Jhinvar, Lohar. Mas
Bairagi, Nai, Gola Kumhar, Mahar Kumhar, Chamar, Chuhra. The two rankings
clearly contain many similarities—both place Brahman at the highest end of ine
hierarchy and the Chuhra at the bottom, for example, but the order of soms
intermediate ranks differs. How similar are the two social rankings? ]

This is obviously a problem in correlation: How closely does the Brahman &
ordering correlate with that of the sweeper? The standard correlation coes®
cient is irrelevant in this context because the caste rankings achieve oy
ordinal status. But Spearman’s coefficient is readily applicable.

The data must first be assigned numerical rank orderings. The Brahman &
sequence has been numbered in order from the highest (1) to the lowes! casis
(12) on Table 14.4. The Chuhra’'s ordering was then assigned the numbess
according to the first sequence. Identical results will result if the Chuhra &
ordering is used as the first reference sequence; the Brahman's ordering was
arbitrarily selected. In this manner, the two rank orders can be compared simpig
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by subtracting the two columns, with the absolute result tabulated in the
difference (d,) column. The differences are then squared and summed as before,
and =d is substituted into Formula (14.8):

r5=1-£}‘1—4}§=+0.35

The rather high value of 0.85 indicates a very large degree of correspondence
between the two orderings. Despite the fact that informants came from the very
extremes of the caste spectrum, both agreed on their relative social standing.
Freed went on to use rs to compare the pairwise results for 23 other randomly
selected informants to produce a median ranking scale for an entire village
(Freed 1963: table 4). In this manner, an objective means of determining caste
ranking was devised.

TABLE 14.4

Social Rankings

Chuhra

Brahman d g/
1 Brahman 1 Brahman 0 0
2 Baniya 2 Baniya 0 0
3 Jat 3 Jat 0 0
4 Baigari 8 Jhinvar —4 16
5 Mali 7 Lohar —2 4
6 Gola Kumhar 5 Mali 1 1
7 Lohar 4 Baigari 3 9
8 Jhinvar 10 Nai -2 4
9 Mohar Kumhar 6 Gola Kumhar 3 9
10 Nai 9 Mahar Kumhar 1 1
11 Chamar 11 Chamar 0 0
12 Chuhra 12 Chuhra 0 0
0 44

The case of Indian social castes is particularly useful to illustrate just how rs
lunctions, since castes are a perfect example of rank orderings which occur in
social contexts. Suppose that two informants from Shanti Nagar produced
exactly identical orderings as shown in Table 14.5.

Because the informants have agreed, the £d’ must equal zero, producing the
iollowing rs of unity:

r :1._ 6(0) :1—-._0__
® 12°-12 1710
=+1.00

The opposite case would be an unlikely situation in which informants produce
exactly reverse orderings, as .in Table 14.6.
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TABLE 14.5.

Social Rankings

A B d d?
1 1 0 0
2 2 0 0
3 3 0 0
4 4 0 0
5 5 Q0 ]
6 6 0 0
7 7 0 0
8 8 0 0
9 9 0 0
10 10 0 0
11 11 0 0
12 12 0 0
0 0
TABLE 14.6
Social Rankings

A B d, d?

1 12 =11 121

2 11 -9 a1

3 10 = T 49

4 9 = 5 25

5 8 -3 9

6 7 -1 i}

7 6 1 1

8 5 3 9

9 4 5 25

10 3 7 49

i1 2 9 81

12 1 o 121

0 572

Spearman’s coefficient for perfect disagreement is found to be

_4_6(5672) ., 3432 _
rs=1-3736 ~ ' "1716 = 1 7200

=-1.00
Thus, the theoretically maximum value of Ed’=572 produces a perfectly

_ correlated coefficient of rs=—1.00. Of course no two informants could be

expected to disagree in such extreme fashion.
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Testing Spearman's rs for statistical significance. Many applications of
correlation require little more than relative measures of covariation (or the lack
of it):

1. Do two Brahman informants tend to agree on caste ranking more closely
than a Brahman and a Chuhra?

2. Does method A of coding ethnographic data produce more agreement
among coders than does method B?

Answers to inquiries such as this can be directly provided by the rs coefficients.

But cases sometimes arise in which one must generalize beyond the samples
at hand to larger populations. The null hypothesis is that the variables lack true
association, and only by chance has rs deviated from zero. Two procedures are
presented below which allow us to apply the hypothesis-testing procedures to
rs. But before considering these techniques, be certain to recognize one
important sampling stricture. As long as the rs coefficient is used strictly as
description, then there are no restrictions on sampling. But if the rs is
interpreted to infer population characteristics from incomplete samples, then
sampling must be random. That is, addition of a test for statistical significance
presupposes randomly generated variates from a specific population.

The sampling distribution of rs has been compiled in Table A.13.° These
critical values refer to the one-tailed case in which the direction of association
has been clearly specified. Positive values of rs predict that large X should be
paired with large Y, while a negative relationship pairs large X with small Y.

Table A.13 makes quick work of assessing the statistical significance of rs.
Spearman’s rank-order coefficient was computed in the earlier cross-cultural
drinking study to be rs = +0.94. The critical value of rs at « = 0.05 with n =6 is
found from Table A.13 to be rs=0.829. We are justified in rejecting the null
hypothesis in this case because the observed correlation is more extreme than
this critical figure. We conclude that the two judges do not differ significantly in
their scaling of drinking behavior in these six societies. Similarly, Table A.13
indicates that the correlation between the two Indian informants is significant
beyond the 0.01 level. Positive associations were expected in both cases, so
each test is one-tailed. .

A second method for testing the significance of rs is available when ten or
more pairs are involved. The rs distribution approaches normality as n in-
creases, and the following approximation holds when n =10:

_rsVn-—2

t _T/‘}T_—?;—* (14.9)
— s

with (n — 2) degrees of freedom.
The caste data in the last section can be used as an example of the normal
approximation of rs:

f e e?
V1-0.85 0.5260

=511

‘See Siegel (1956: 210-211) for a derivation of the rs distribution.
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A one-tailed test is invoived, so at the 0.01 level with (12— 2) = 10 degrees «'
freedom, Table A.4 indicates that the critical value is to0. = 2.764. The observed
statistic for rs far exceeds this critical value, and the result is declared to be
statistically significant. The correlation between Brahman and Chuhra intor
mants is significantly distinct from zero, so the null hypothesis is rejected. Note
that this significance test should not be attempted if the informants had no
been selected in some random manner.

rs with tied observations. Spearman’s rank-order coefficient compares tw:
ordinal scales to determine the degree of similarity between rankings. The
computations assumed an underlying continuous scale for both variates, so ties
should not occur between the observations. But in practice, ties are known 1o
occur rather frequently within anthropological scaling, and it becomes neces
sary to correct the computations of rs to compensate for tied ranks.

The presence of ties tends to lower the computed value of rs. A correction

factor for tied variates is

t°~t
Fesow (14.10)
If three scores were tied at the same rank, for example, then the correction
T =3%-3/12 = 2. This computation is to be performed for all sets of tied variates
within the X variable. The quantity 2Ty is the sum of the corrections on tha &
variable. Similar computations are performed on the Y ranking, to produce X7, '
The following formula should be used for rs whenever ties are present

_IX*+3Y*-32d? -
fsh—-—_—__z ,——E——EX EYE (141 ]
where
._n’—n_ 2_n'—n_
ZEXF= 15 ETx and ZY¥Y = 1 ZTy

This correction for ties admittedly complicates the computations somewhat, but
many of the correction factors turn out to be redundant; once computed, thess
terms often recur in the same formula, thereby simplifying the arithmetic An
example should clarify the computation of rs with ties.

Few students of anthropology would question that economic and politica
development are functionally related in modern industrial societies. But Ihe
cognate notion that this relation holds for nonindustrial societies has been Ihe
subject of long debate in anthropology. Melvin Ember attempted to test tha
relationship between political and economic factors in a cross-cultural analysw
(Ember 1963). A random sample of 24 societies was drawn from the 564
contemporary and historical cultures in the "World Ethnographic Sample’ (ses
Table 14.7). Each society was then ranked according to its relative economis
and political development. Economic specialization is known to be quite closely
correlated with the maximum community size, so economic development was
operationally defined as the "‘upper limit of community size." Ember defined

“Confusion sometimes arises as to just which tied scores are ‘'corrected.” We are concerned e
only with ties occurring within ranks of each variable. Ties between pairs of variates simply reduce

d =40.
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political authority as ‘“‘the number of different political officials who participate
in all levels of government” (for example, clan chief and head of an extended
family). Table 14.7 contains the rankings of these economic and political
indicators for the 24 sample societies. Can we say that economic and political
development are positively correlated in nonindustrial societies?

TABLE 14.7 Relationship between upper limit of community size
and differentiation of political authority (data from
Ember 1963: table 5)

Rank Order of Community Political
Societies Size Authority d, d’

Kaska 1 6 -5 25.00
Caribou Eskimo 2 2.5 -0.5 0.25
Kutubu 3 10 -7 49.00
Xam 5 2.5 25 6.25
Naron 5 6 -1 1.00
Mataco 5 6 -1 1.00
Tiwi 8.5 25 6 36.00
Qjibwa 8.5 10 -1.5 2.25
Bacairi 8.5 10 -15 2.25
Acholi 8.5 17 —8.5 72.25
Guahibo 1.5 25 9.0 81.00
Timucua 11.5 15 -3.5 12.25
Ontong Java 13 i5 -2 4.00
Chamarro 15 10 5 25.00
Lango 15 10 5 25.00
Samoa 15 18.5 -3.5 12.25
Cuna 17 21 -4 16.00
Omaha 19 20 -1 1.00
Teton 19 13 6 36.00
Didinga 19 18.5 0.5 0.25
Huron 21 15 6 36.00
Tswana 22.5 22 0.5 0.25
Ashanti 225 23 -0.5 0.25
Thai 24 24 0 0.00

.0 444 .50

As before, Spearman's coefficient judges the relationship between these two
ordinal scales, but the computations differ somewhat from previous cases
because of the tied scores. The sum of squared deviations is found as before;
then the correction for ties must be applied. The community size rankings are
tied into six sets: The score 8.5 occurs four times, the scores 5.0, 15.0, and 19 each
occur three times, and both 11.5 and 22.5 occur twice each.

3—
39 SO B

e [) €0 ]

1150 — 12 = 1138

i
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A similar procedure is followed to correct for ties on the political authority sca-
3 _ v 3 _ 3 _ <
_24°-24 [2 (3 3)+2 2 4-4 5 5]

2
Y ="33 12 12 T712 T2

~ 33\ 2°-2 _(3-3\ 4-4 5-5
"“52‘[2( 12 )+ 12 +3( 12 )* 12 T2 ]
= 1162 — (4.0 + 0.5 + 5.0 + 10.0) = 1150 — 19.5

- 11305

These figures can now be substituted into computing Formula (14.11) for
when ties are present.

. _ 1138 + 1130.5 - 4445 _
’ 2./1138(1130.5)

Using the normal approximation to Spearman's rank-order coefficient, e
value of t is found to be

0.80

0.80Vv22
V1=0.807

This figure is highly significant at df=(n —2)=22. The conclusion is thet

Ember’'s random sample strongly supports the hypothesis that economic and

political development are positively associated in nonindustrial societies.
Had we failed to correct for the ties, the computed value of rs would have been

t= =6.25

ey 6(444.5) _ 12,667
N 24° - 24 13,800
=0.81

Although the difference proves slight in this case, an inordinate number of 1
can cause I's to seriously overestimate the actual correlation if the correction hw
ties has not been applied.

Example 14.3

Grammatical sex gender is known to correlate with a number of semantic
categories which include Freudian sexual symbols, metaphorical exten-
sion, and sex role attributes such as beauty and masculinity. But such
findings generally relate to a single language, or a few norms over several
languages. Robert Munroe and Ruth Munroe have attempted to generalize
these findings by examining the underlying relationships between sexual
grammar and social structural factors in a cross-cultural study (Munros
and Munroe 1969). A sample of nine languages was selected from those
discussed in the Ethnographic Atlas and then coded for (1) structural bias
toward sex and (2) the prevalence of male-gendered nouns. Male cultural
bias was considered to be present under any one of the following conditions
patrilocal residence (col. 16 in the At/as), patrilineal kin groups (col. 20 in
the Atlas), or patri-inheritance (cols. 74 and 76 in the At/as). Each item

A
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present is assigned one positive point, and each item rated for "'female
bias present’” receives one negative. Thus, a scale has been devised which
159 ranges from +3 for strong structural bias toward males to —3 for strong
-' & structural bias for females; zero indicates the lack of structural sexual
R bias. The frequency of male and/or female nouns was expressed as
F “percent of male gender nouns” and words assigned to neuter gender
bl were not recorded. The data for these societies are presented below.

Does this sample support the hypothesis that societies with a tendency
toward male bias in social structure also manifest a bias toward male-
gendered nouns in their grammar?

o

10

B
.
B Structural Sex Male-Gender
. Bias Nouns
® e % Saciety raw rank  raw,% rank d dF
- Lebanese (Arabic) +3 7.5 64 9 -1.5 2.25
Kanawa (Hausa) +3 7.5 63 7 0.5 0.25
s Nama Hottentots +3 75 63 7 05 025
T Guijarati +3 7.5 52 5 25 6.25
o« = Irish +2 -8 63 7 ~20  4.00
Bhy 1 French Canadians +1 3 48 4 -1.0 1.00
o i Byelorussians +1 3 44 2 1.0 1.00
Greeks +1 3 35 1 2.0 4.00
o Dutch 0 1 45 3 —-2.0 4.00
_, 0.0 23.00
':3,"
’1, A The correction factors for ties are first computed.
I 9°-9 [fas_4\ [32-3
L . 2 =
na i - = il
o '.1'“ =X 12 [( 12){ 12 )]
3 =60-(5+2
‘ = 53
_ Spearman’s coefficient is computed to be
‘ o= BN -B_ o
| K 2~/53(58)

For n =9, this value of s is found to be significant at the 0.01 level.

Note that had the correction for ties not been applied, the following
value would have been obtained:

,s=1_6(23}_1_(138)

9°-9 720
= +0.81

This uncorrected value is also significant at beyond the 0.01 level.
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14.5.2 Kendall’s Tau

Spearman's coefficient of rank-order correlation compares two ordinal ranking»
in terms of their relative association; rs is based upon the magnitude of the
squared differences between the ranks. The same sets of data can be viewed
from a rather different statistical perspective, and a second index of rank-orde:
correlation emerges.

This new method can be illustrated using Freed's data on caste ranking -
northern India. Two informants, a Brahman and a Chuhra, rated the 12 castes
into appropriate orders. Although their overall conception of the social ordes
was quite similar, the specific rankings were by no means identical, and
Kendall's tau provides a new method for assessing this correlation.

The Kendall's tau statistic, 7, can be computed by either of two rather differen!
methods. The first technique requires pair-by-pair enumeration such as com
pleted in Table 14.8. Note that the Brahman's responses (termed the X)) have
been placed into sequence and assigned ranks as before. The Y. are also
ranked, but each caste in Y; receives the corresponding rank number from the X
ordering. Thus, even though the Chuhra ranked the Jhinvar caste fourth
Jhinvar receives rank 8 to correspond with its placement in the Brahman
ranking. The second step requires that we determine the exact number of /arges
ranks for every Y. Beginning with rank Y, (Brahman), we find there are
precisely 11 larger rankings (Y: through Y. are all larger). The rank Y. (Baniya)
has ten larger subsequent ranks, and so forth. The fourth ranking, Y, (Jhinvar)
has an assigned rank of 8, so only four subsequent ranks (10, 9, 11, and 12) are
greater. After all ranks on Y have been enumerated, the total counts, ZC, are
summed to 56.

Kendall’s tau can now be found through the enumeration method. First the
numerator must be determined by the following formula:

numerator=4%C, —n(n —1) (14.12)
TABLE 14.8
Subsequent Ranks Larger Counts,

X Y, than Y, C

1 Brahman 1 Brahman 2,3,8,7,54,106,9,11,12 1
2 Baniya 2 Baniya 3,8,7,54,19,6,9,11,12 10
3 Jat 3 Jat 8,7,6,4,10,6,9,11,12 9
4 Baigari 8 Jhinvar 10 9,11,12 4
5 Mali 7 Lohar 10 9,11,12 4
6 Gola Kumhar 5 Mali 10,6,9,11,12 5
7 Lohar 4 Baigari 10,6,9,11,12 5
8 Jhinvar 10 Nai 11,12 2
9 Mahar Kumhar 6 Gola Kumhar 9,11,12 3
10 Nai 9 Mahar Kumhar 11,12 2
11  Chamar 11 Chamar 12 1
12 Chuhra 12 Chuhra 0
ZC =56
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where n is the number of variate pairs. In the example,
numerator = 4(56) — 12(11) =92
The entire Kendall's tau statistic is defined to be

numerator
o
Vin(n —=1)-ZT][n(n —1)-=T]

where the numerator is computed from Expression (14.12). This formula for tau
includes an automatic correction term for ties within rankings. For every set of
ties within a ranking, the individual correction term is given by t(t —1). If, for
example, five variates were tied at a single rank, then t(t —1) = 5(4) = 20. The
sum ZTx represents the total of the t(t — 1) corrections for the X scale, and 2T,
sums corrections over the Y ranks. When no ties are present, then 2T, =ZTy =
0. Use of this correction will be illustrated in the examples to follow.’

The value of tau in the caste stratification example is computed from
Formulas (14.12) and (14.13) to be

(14.13)

. 92 _92
VI12(11) - 0][12(11)-0] 132
= +0.697

Because the maximum of tau is =1.00, this measure clearly indicates that the
agreement is close between the two informants. We know that the same data
produced a value of rs = +0.85 in the last section, so it becomes clear that + and
rs measure somewhat different conceptions of correlation. Tau has certain
intrinsic advantages over rs as a measure of correlation, but r unfortunately
involves a bit of rather tedious computation.

Some of this computational burden is alleviated by using a graphical solution
for finding the numerator of tau. The initial step in the graphic method is to list
the sets of ranks as before. Then like ranks are connected by straight lines, as in
Fig. 14.5. The number of intersections of these lines, termed Z/, are then
counted. If the ranks were ordered in identical fashion, then all connecting lines
would be exactly parallel, with no intersections occurring at all. The sum X/
increases as the rankings become more dissimilar. The two caste rankings
produce lines which cross a total of £/ = 10 times. This sum can be converted to
the numerator of tau by the following expression:

numerator=n(n —1)—-4Z/ -ZT, (14.14)

where 2/ is the number of crossings on the graph and T, is the sum of the
t(t —1) factors for the second (Y) ranking. For the caste rankings on Table 14.8,

numerator = 12(11) — 4(10) — 0 = 132 — 40 = 92

"It becomes necessary 'o confess once again that the statistical nolation lacks consistency.
Throughout this book, Greek letters have generally denoted parameters and italic letters refer to
statistics. But the system has broken down: Kendall's lau is clearly a statistic and not a parameter, but
the statistic is called r. The problem is obvious, of course, since t has already bsen assigned to
Student's test. But the distinction between statistic and parameter should be kept firmly in mind by this
point, so the devious terminology ought not cause undue conceptual difficulty.
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Response by Brahman Response by Chuhra
Informant Informant
t Brahman 1 Brahman
2 Banya 2 Barnuya
3 Jat 3 Jat
4 Baigan 8 Jhinvar
5 Mali 7 Lohar
6 Gola Kumhar 5 Mali B
7 Lohar 4 Baigan
8 Jhinva
var 10 Nai
9 Mahar Kumhar & Gola Kumhar
10 Nas 9 Mahar Kumhar
11 Chamar 11 Chamar
12 Chuhra 12 Chuhra

Fig. 14.5 Graphical solution for Kendall's 7.

This same numerator was computed by the enumeration methods, so the
resulting values of 7 are identical. Whenever ties occur, the lines should be
drawn such that lines for tied variates do not cross. The graphical solution
generally works better when only a moderate number of ties occurs.

The statistical significance of Kendall's 7 can be tested in two ways, assuming
that the samples were randomly generated. Whenever n =10, the two critical
values of the numerator of r are given as follows (after Sokal and Rohlf 1969:
537):

Numerator

n « =0.05 a = 0.01

5 20 —
6 26 30
7 30 38
8 36 44
9 40 52
10 46 58

These critical values are exact only when no ties occur. A table of small n
corrected for ties can be found in Burr (1960).
If the sample size exceeds 10, then the distribution of Kendall's tau can be
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approximated by a normal distribution. The null hypothesis of H,: r =0 can be
tested by using a form of the standardized normal deviate:

Tobutved_o
zZ= 14.15
V2(2n +5)/9n(n — 1) : )

The probability of such large differences between the observed tau and the nuli
value of + =0 can be found as usual from Table A.3.
The normal approximation method indicates that for the caste example,
. 0.697 __0.697
V2(24 + 5)/108(11)  10.0488

=3.154

Table A.3 indicates a value of only A = 0.0008 corresponding to so small a z, so
the probability that the obtained r would deviate from 7 = 0 (in either direction)
by chance alone is only p =0.0016. The null hypothesis is rejected, and we
conclude that the Brahman and Chuhra indeed rank the castes in a statistically
indistinguishable manner.

An exact test of significance for Kendall's tau is also given by Naroll (1974),
but the computations are so tedious as to require a computer for any large-scale
application.

Example 14.4

Let us test the hypothesis that the more a society depends upon hunting,
the more nomadic (that is, the less sedentary) will be that society. A
sample of seven societies was randomly selected from the Ethnographic
Atlas, and these societies were coded for the dependence upon hunting
variable (col. B) and the settlement pattern variable (col. 30).

Hunting,
Society percent dependence Settlement Pattern
Copper Eskimo 36-45 Seminomadic communities
Djafun 0-5 Nomadic bands
Fox 36-45 Seminomadic communities
Gros Ventre 76-85 Nomadic bands
Makin 6-15 Complex settlements
Shasta 26-35 Semisedentary communities
Wishram 16-25 Semisedentary communities

Do these data support the hypothesis?

Kendall's tau coefficient is useful in this case, and r will be computed by
both methods. To find by enumeration, the variates must first be ranked
in descending order of X (hunting), and then the £C, can be computed.
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Hunting Settlement
Society Rank Rank Subsequent Ranks Total
Gros Ventre 1 1.5 3.5,3.5,6.5,5.5,7,(1.5) 5.5
Fox 2.5 35 (3.5),5.5,5.5,7 35
Copper Eskimo 25 3.5 55557 3
Shasta 4 5.5 (5.5),7 15
Wishram 5.5 5.5 T 1
Makin 5.5 7 0
Djafun 7 1.5 0
ZC =145

Note that the score “0.5" has been added to the C; if the subsequent
ranking is tied with the reference rank; these cases are enclosed in
parentheses: =3

numerator = 4(14.5)-7(6) =58 - 42 =16 3
Kendall's tau is thus
o numerator _ 16
\[2-4ja2-6]  /38(36)
= 0.433

Because n is less than 10, the tabled values indicate that the numerator
(16) does not reach the critical value of 30; this sample has insufficient
evidence to cause rejection of the null hypothesis. There is no reason to
suspect a correlation between hunting and settlement pattern, based
upon this limited sample.

The numerator of 7 can also be found using the graphic method:

Gros Ventre 1 15
Fox 25 ag
Copper Eskimo 2.5 3.5
Shasta 4 55
Wishram 55 55
Makin 55 7

Djafun i 15

There are a total of five crossings, so the
numerator = 7(6) —4(5)-6 =16

This is the same value of the numerator as found earlier, so the same value
of tau must resulit.
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Example 14.5

Spearman’s rs was applied earlier to Ember's cross-cultural study of
community size and political authority (Table 14.7). Kendall’s tau can also
determine the relationship between these two variables.

Rank Order of Community Political . Sum of Larger
Societies Size Authority  Subsequent Ranks
Kaska 1 6 18
Caribou Eskimo 2 2.5 20.5
Kutubu 3 10 14
Xam 5 25 19
Naron 5 6 16.5
Mataco 5 6 16
Tiwi 8.5 2.5 16.5
Ojibwa 8.5 10 13.5
Bacairi 8.5 10 13
Acholi 8.5 17 7
Guahibo 11.5 2.5 13
Timucua 115 15 8
Ontong Java 13 15 7.5
Chamarro 15 10 9.5
Lango 15 10 9
Samoa 15 18.5 5.5
Cuna 17 21 3
Omaha 19 20 3
Teton 19 13 5
Didinga 19 18.5 3
Huron 21 15 3
Tswana 225 22 2
Ashanti 22.5 23 1
Thai 24 24 0
ZC =2265

The following ties exist on the X variable: Rank 5 (tied three times), rank
8.5 (tied four times), rank 11.5 (tied twice)}, rank 15 (tied three times), rank
19 (tied three times), and rank 22.5 (tied twice). The correction for ties on X
is
T«=3(8—-1)+4(4—-1)+2(2-1)+3(3-1)+3(3-1)+2(2—1)
=34

Be certain to note here that t represents the number of ties in each rank
rather than the value of the tied ranks. The correction for ties on the Y
variable is

Ty=44-1)+3(B-1)+5(-1)+3(3-1H+2(2-1)
=46
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The numerator of r can then be computed:

numerator = 4(226.5) — 24(23) = 906 — 552
= 354
Tau is then computed to be
354
s
V[24(23) — 34][24(23) — 46]
=0.69

The graphical method can also be used to determine the numerator of tau.
In the diagram below, exactly 38 crossings occur. Thus,

numerator = 4(226.5) - 24(23) = 906 — 552

= 354
Rank Order of ~ Comrmunity Political
Societies Size Authority
Kaska 1 6
Caribou Eskimo 2 = 2.5
Kutubu 3 S 10
Xam 5 :’- 25
Mataco 5 S = 6
Tiwi 85 e 2.5
Ojibwa 8.5 = 10
Bacair 85 - 10
Acholi 8.5 17
Guahibo 11.5 - 25
Timucua 11,5 15
Ontong Java 13 :‘-;*_: 15
Chamarro 15 = q 10

Pt =

et =
Lango 15 = 10
Samoa 15 e 18.5
Cuna 17 - _ = 21
Omaha 19 "_‘_‘L: 20
S =

Teton 19 13
Didinga 19 185
Huron 21 15
Tswana 225 22
Ashanti 225 23
Thai 24 24

Thus, the same numerator is found by both methods and of course the
values of tau are identical.

Formula (14.15) can be used to test the significance of this value of tau:

0.69
Z ==
V2(2 - 24+ 5)/9 - 24(23)
=4.72

Table A.3 indicates that this result is clearly significant.
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14.5.3 Comparison of Spearman’s rs and Kendall's

7 and rs have been computed for the same data, and the values of the two
nonparametric correlation coefficients were found to differ. The reason for this
is that the two coefficients are based upon rather different underlying models,
and hence they do not measure "‘correlation” in exactly the same manner. But it
turns out that rs and r utilize exactly the same amount of information, so they
have identical power. This means that tests of significance based upon either =
ar rs will reject a false H, at exactly the same level of statistical significance (see
Siegel 1956:chapter 9). But several properties of r have led to a general
preference of Kendall's + over rs.

Probably the chief advantage of Kendall's statistic is that the distribution of =
approaches the normal more rapidly than does rs. In fact, the distribution of 7 is
virtually identical to the normal in samples as small as n =9. So v seems
generally more accurate than rs in testing for statistical independence between
ranked variables, especially when small or moderately sized samples are
involved.

The direct and simple interpretation of = also renders Kendall's tau generally
more suitable for use in anthropology. The probability of any value of = is
defined simply in terms of concordant and discordant pairs which, while
sometimes tedious to compute, present few conceptual difficuities. But the
Spearman'’s rs is based upon the squared sums of differences and becomes
meaningful only through tortuous analogy with the parametric correlation
coefficient r.

Kendall’'s v seems also to produce a more meaningful result when a large
number of ties are present. As would be expected, Spearman'’s rs rather closely
follows the Pearson Correlation Coefficient when the underlying distribution is
more-or-less continuous, that is, when relatively few ties occur in ranking. But =
is often more accurate when a large number of cases must be classified into a
relatively few ordinal classes.

T has the final advantage overr, in that tau can be generalized into a partial
correlation coefficient. This statistic, called 7xv .- is particularly useful when
observations upon two variables might in fact result from a causal connection
with a third related variable. As Siegel (1956) has pointed out, a strong
correlation of stature and vocabulary among school children might well be due
to an important interrelationship with a third variable, such as age. Kendali’'s
partial correlation is a close relative of Kendall's 7, and these statistics can be
helpful in sorting out a number of related variables (see Siegel 1956: 223-229
and Conover 1971:253-255 for a discussion of the techniques of partial
correlation).

All of these reasons seem to have convinced anthropologists to rely more
upon T than upon rs. The main disadvantage of Kendall's tau is, of course, the
somewhat tedious computations required whenever n is large. The graphic
solution is of some help, especially when few ties are present. But an even
greater boon has been the recent availability of computer programs to compute
both rs and = with little effort (see, for example, the NONPAR CORR program
available in the SPSS system devised by Nie, Bent, and Hull 1970).

The most important point to remember when working with rank-order
correlation is that whichever coefficient is employed, the resulting value is
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specific only to that particular coefficient. It is quite improper to compute r. for
one data set, Kendall’s  on a second set, and then compare the values 1o
determine relative degree of intercorrelation. For reasons detailed above, the
coefficients measure correlation on different scales, and they are expected to
produce different results.

14.5.4 Gamma

Regardless of whether 7 or rs is used, the question of excessive ties within ranks
can become a serious problem. Although both r and rs can be corrected for ties
difficulties often arise when computing the cumbersome corrections. The
normal approximation also becomes less valid as the number of ties increases
The correlation procedure can be simplified somewhat by grouping the ordinal
variates into a few ranked categories. In effect, the data can thus be reduced into
two tight ordinal sequences (A and B) within the standard R x C format (Blalock
1972: 421). For example, for case A:

Variable 2 Variable 1
Low Medium High Total
High 0 0 30 30
Medium 0 30 0 30
Low 30 0 0
Total 30 30 30 90

A chi-square test for independence within an R x C table is commonly applied
to analyze the relationship between two variables such as these, but as Naroll
(1970c:163) has correctly pointed out, this practice has a major shorticoming
Compare case A with this second example, case B:

Variable 2 Variable 1
Low Medium High Total
High 0 30 0 30
Medium 30 0 0 30
Low 0 0 30 30
Total 30 30 30

The chi-square test will tell us that the two cases are identical. The variables in
case A are arranged into a definite monotonic trend: Low variates predict low
variates and high variates predict high variates. Case B lacks this notable trend
Unfortunately, a chi-square test for independence is blind to this difference
because the test is not sensitive to changes on an ordinal scale. Chi-square
must not be used in such cases.

The gamma coefficient has been designed for precisely those cases in which
chi-square falters. Gamma (v) requires that both scales be ordinal, and yet the
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data are grouped into the conventional R x C format; hence, gamma is particu-
larly effective when so many ties occur that neither » nor rs can be used in
comparing two ordinal rankings. The value of gamma is given by

_ _no. of concordant pairs minus no. of discordant pairs
no. of concordant pairs p/us no. of discordant pairs

_ LFi~ID,
£C, + ED,

A pair is termed concordant if they are ordered into the proper sequence and
discordant if the sequencing is reversed. The first method used to find Kendall's
tau in fact involved counting the number of concordant pairs (£C;). The
following (hypothetical) example shows how the pairs can be enumerated to
find the gamma coefficient.

A study has been initiated to test the hypothesis that premarital sexual
promiscuity is more prevalent among ‘‘primitive” than among “civilized”
societies. A cross-cultural survey resulted in a random sample of 232 societies,
each of which can be rated on (1) the level of sociopolitical complexity and (2)
norms of premarital sexual behavior. Is there a relationship between the two
variables?

These data are assembled in Table 14.9. Both scales are ordinal, but because
the number of ties is excessive, neither r nor rs will serve as a suitable indicator
of correlation. The chi-square statistic would adequately handle the format of
the data, but x° reduces such data to nominal form, thereby ignoring the
important ordinal relationship.

To apply gamma, it is first necessary to determine the number of concordant
pairs within the sample data. The levels of sociopolitical complexity have been
ranked into five ordered categories, running from relatively low to very high
levels of integration. Similarly, the norms of premarital sexual behavior have
been scaled into three categories from high to low promiscuity. The upper
left-hand cell (cell: ;) contains six societies—those at the state level of complex-
ity with a high degree of premarital sexual promiscuity. All six societies are
"ties" in the earlier sense of r and rs. Furthermore, all societies listed on the first
row (‘“'state’) are also tied with respect to the level of integration with cell, ;. That
is, all the societies on the first row are tied with respect to sociocultural

(14.16)

TABLE 14.9

Premarital Sexual Promiscuity

Level of Sociocultural Weakly Strongly
Complexity Prohibited Prohibited Prohibited Total
State 6 8 19 33
City 7 15 20 42
Town 18 4 2 24
Village 36 18 19 73
Band 52 6 2 _60
Total 119 51 62 232
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integration, and all the cells in the first column are tied with regard to “high
sexual promiscuity.” For such tables, societies are termed concordant if they
rank lower than those grouped in cell,,;.. Since row 1 and column 1 contain only
societies tied with those in cell.,, none of these societies could possibly either
agree (concur) or disagree (demur) with the theoretical ranking. But all the
societies down one row (‘‘city’’ or below) and over one column (the "'moderate”
and “low” columns) agree with the rankings of cell,,, and hence are termed
concordant societies. The total number of these cases is given by the sum of the
societies in cell.> (15 societies), plus the total in cell.s (four societies) and so

forth: 15+20+4+2+18+19+ 6+ 2 = 86 societies

Thus, 86 societies are concordant with the six societies in cell,;. The total
number of concordant pairs (as distinct from concordant societies) is thus

6(86) = 516 pairs

The concordant pairs must then be computed for the remaining cells in a similar
manner. Moving to the second row of column 1 (cell..), the cell contains 7
societies. Again, societies in the first column and second row represent "ties,"

so the concordant pairs involve only those groups below and to the right of
CE"Q.}:

s

= P

7(4+2+18+19+6+2) = 7(51) = 357 pairs

This process of enumeration continues down the first row—note that the last
row of the first column will produce no concordant pairs—and then onto the
second column, and so forth. The total number of concordant pairs for Table
14.9 is thus i

ZCi=6(86)+ 7(51) + 18(45) + 36(8) +8(43)

+15(23) + 4(21) + 18(2)
= 2780 pairs

The total number of discordant pairs is found in a manner reverse to that
described above. A discordant pair matches a selected reference case with all
societies known to rank lower on either scale. So, the procedure begins with the
upper right-hand cell (cell,s) and proceeds to enumerate down and to the left.
The total number of pairs discordant with cell;; are

19(15+ 7+ 4+ 18+ 18 + 36 + 6 + 52) = 19(156) pairs
The next count is obtained from cellz;:
20(4+18+18+ 36+ 6+ 52)=20{134) = 2680 pairs
The total number of discordant pairs for the entire table is
LD, = 19(156) + 20(134) + 2(112) + 19(58)

+8(113) + 15(106) + 4(88) + 18(52)
= 10,752 pairs

We now have both quantities necessary to compute gamma from (14.16):

_ 2780 - 10,752 _
2780 + 10,752

—0.589
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This rather strong negative value of gamma moderately supports the hypothesis

that premarital sexual promiscuity is correlated with the less advanced levels of
sociopolitical organization. That is, a low level of sociocultural complexity is
found to occur with high promiscuity, and high complexity predicts a lower level
of promiscuity. This is why the value of gamma is negative. Naroll's (1974) exact
test of significance applies to gamma as well as Kendall's tau.

Example 14.6

In Chapter 11, Divale's hypothesis for the evolution of matrilocality was
discussed (Example 11.9). In addition to predicting the gross change
toward matrilocality upon warfare and migration, Divale also predicted a
definite cycle of residence patterns, beginning with patrilocality and
evolving into uxorilocality.

Do the three descent types appear to correlate with Divale’'s evolution-

.3'. ary sequence of residence types (data from Divale 1974)7?
Descent Types
L o choems NRRERRN. o e
Residence Matrifineal Ambilineal Patrilineal Total
Uxorilocal 1 5 1 7
Matrilocal 52 0 0 52
Matrilocal/
avunculocal 5 0 6] 5
3 Avunculocal 50 0 0 50
_, Avunculocal/
§ virilocal 7 2 0 9
|3 Virilocal 26 29 21 76
Patrilocal 4 2 542 548
_ Total 145 38 564 747

Gamma is an appropriate coefficient with which to assess the relation-
ship between these two ordinal pairs. The number of concordant pairs is
found as follows:

5(21+542)= 2815 pairs

52(2+ 29+ 21 + 2 + 542) = 52(5986) = 30,992 pairs
5(2 +29 + 21+ 2+ 542) = 5(596) = 2,980 pairs
50(2+ 29+ 21+ 2+ 542) = 50(596) = 29,800 pairs
7(29+ 21 + 2+ 542) = 4,158 pairs

26(2 + 542) = 14,144 pairs

2(21+542)=1,126 pairs

29(542)=15,718 pairs

1(2+29+21+542) =596 pairs

2C =102,329
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Similarly, the number of discordant pairs is

1(52+5+50+7+2+26+29+4+2)=177 pairs
21(4 +2) =126 pairs

5(52+5+50+7+ 26 + 4) = 720 pairs

2(26 + 4) = 60 pairs

29(4) = 116 pairs

D =1199
From Formula (14.16), the gamma coefficient is found to be

102,329-1,199
102,329+1,199
This strong value of y = 0.976 leaves little doubt of a positive association

between residence and descent, in the order hypothesized by Divale
(1974).

= 0.977

14.6 CORRELATION ON THE NOMINAL SCALE

Probably the most common measure of statistical correlation—perhaps better
termed association—between nominal variables is the chi-square statistic,
considered in detail in Chapter 11. But one major difficulty with chi-square is
that its value depends upon the size of sample, n. To see that this is so, examine
the following contingency table:

25 35 60
35 25 60
60 60 | 120

The value of the x° statistic can be readily computed to be 3.32, with a single
degree of freedom. Because this value is not significant at the 0.05 level, the null
hypothesis of no assaociation would generally not be rejected.

Let us now modify the frequencies slightly by doubling the figures in the
above contingency table:

50 70 120
70 35 120
120 120 | 240

A single degree of freedom remains, but the chi-square statistic is now
inflated to x* = 6.68. The results are now found to be significant beyond the 0.01
level, and H, would be rejected.

What has happened here? Although the actual numbers of the two tables
differ—the second is exactly twice the first—the relationships of the cells to one
another remains constant. The chi-square statistic is a direction function of
sample size, and hence chi-square can never be used as an indicator of the
strength of a relationship. The two tables above are identical in terms of their
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percentage relationship, and such proportional similarity is often of interest to
the social scientist. If one merely reports a chi-square test as (1) significant or (2)
not significant, then the analysis of contingency tables would be totally
obfuscated.

A number of coefficients have been proposed from time to time to measure
the strength of relationship within a contingency table. No attempt will be made
to cover the range of such coefficients. Every statistic is designed to fit specific
needs, and only a couple of the most important measures of association will be
introduced.

14.6.1 The Phi Coeefficient

Look carefully again at the two contingency tables presented above. As the cell
frequency increased, the chi-square statistic simultaneously increased and
eventually made the grade as “statistically significant,” even though the
relationship between the two variables was absolutely unchanged. In fact, x’
increased not only with n, but also exactly in proportion to n; the second value
of x* is about twice the first (within a small rounding error). When n doubles,
so does x* when n triples, x° also triples. This same difficulty has been
encountered a number of times before, as in Chapter 4, when we needed a
measure of sample dispersion. You will remember that the sum of squared
deviations about the mean, (X, — X)° increased in exact proportion to sample
size. This difficulty was solved by dividing the squared deviations by n; the
sample variance, S°, was the resultant statistic. Because S° is an average of the
squared deviations, the statistic is independent of sample size. A similar strategy
will enable us to ‘‘salvage’’ the chi-square statistic for assessing the strength of
nominal associations. The process of simply dividing by n will free the
chi-square statistic from the undesirable inflation due to increasing sample size:

2

=¢* (14.17)

This new expression is known as phi squared (pronounced ‘'fee squared’).
Here, ¢° is simply a variant of x*, which has been rendered independent of
sample size. The most commonly encountered form is simply ¢ (‘fee”), the
square root of Expression (14.17). Because ¢ applies only to the 2 x 2 contin-
gency format, the following computational formula is helpful:

ad — bc

- 14,
¢ Via+b)a+c)b+d)(c+d) (14.18)

where a, b, ¢, and d represent the various cell frequencies defined earlier for
Fisher's Exact Test [Formula (11.10)]. Note that ¢ consists merely of the
difference between the diagonals (ad — bc), divided by the square root of the
product of the row and column totals.

Unlike its cousin the chi-square statistic, the phi coefficient has some definite
limits: ¢ ranges only between +1 and —1. This range readily follows from the
definition of ¢. The following contingency table indicates the extreme of
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absolute positive association:

50 0 50
0 50 50
50 50 | 100

The phi coefficient is found to be

(50)(50) — (0)(0) _ 2500 _
V/(50)(50)(50)(50) 2500

As expected, a perfect positive association produces a value of ¢ = +1.00. Such
situations will occur whenever every instance of variable 1 occurs with every
instance of variable 2, and an absence of variable 1 invariably denotes the
absence of variable 2.

The opposite extreme arises whenever variables 1 and 2 never co-occur (thal
is, when cells a and d are empty), which produces the case of absolute negative
association :

+1.00

0 50 50
50 0 50 |
50 50 | 100 :-

The phi coefficient for this case is

S (0)(0) - (50)(50) _ —2500 _ 100
V(50)(50)(50)(50) 2500
Perfect negative association will always produce ¢ = —1.00.

Finally, there is the situation in which variables 1 and 2 have no association al
all:

25 25 50
25 25 50
50 50 | 100

(25)(25) ~(25)(25) _ 0 _ 44

V/(50)(50)(50)(50) 2500

These simple examples provide an intuitive understanding to the meaning of
various values of ¢.

Example 14.7

O'Nell and Selby (1968) have postulated that Zapotec culture allows men
more opportunity for escape than females. Community pressure, for
instance, effectively bars most females—especially younger women—from
using alcohol as an escape from reality. If this notion is correct, then one
expects to find relatively more males than females attending socially
sanctioned fiestas.

To test this hypothesis, O'Nell and Selby conducted a census at one
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cuelga ("a drunken fiesta lasting from three to five days, customarily
celebrated in honor of a person’s Saint's day”) in the village of Santo
Tomas Mazaltepec, a Zapotec pueblo near Oaxaca, Mexico.

Reported attendance at Cuelgas in Santo Tomas
Mazaltepec: Differential response by sex.

Attend Do Not Attend Total

Men 26 4 30
Women 12 13 25
Total 38 17 55

Does there appear to be a strong association between sex and atten-
dance at the cuelga? Is this difference significant at the 0.01 level?

The first question is one of strength of association, so the ¢ coefficient
must be computed:

26(13)—4(12) _ 290 _
V30(25)(38)(17) 696.1

The phi coefficient indicates a positive association of moderate strength in
the predicted direction.

The statistical significance of this association can be found by using the
standard chi-square statistic (corrected for continuity).

d):

(0 E, |0 —El| |0, - E|-2 [0 —-E -3 [0, —E —3*/E
26 207 5.3 4.8 23.04 14
4 9.3 5.3 4.8 23.04 2.48
12 173 5.3 4.8 23.04 1.33
13 7.7 5.3 4.8 23.04 2.99
x =791

This value of x? is significant beyond the 0.01 level, but the moderate
value of ¢ should sound a note of caution against undue preoccupation
with the high level of statistical significance.

Example 14.8

In his study of the southern Yanomamé, Chagnon (1967) suggested that
warlike tribes tend to emphasize a cultural norm of ferocity—the more
ferocious the warrior, the higher is his prestige. A cultural manifesta-
tion of this ferocity is a strong tendency for one group to attack the
neighboring peoples in an attempt to expand its social territory. The

by
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following data have been extracted from Otterbein (1970: 130-149, appen-
dices C and D).

Territory Territory
Constant or Contracting Expanding
Attacking continual Amara Abipon
or frequent Fox Aztec
lla Egyptians
Mossi Jivaro
Nandi Mundurucu
Papago Plains Cree
Saramacca Sema
Tibetans Somali
Wishram Thai
Timbira
Tiva
Infrequent Albanians Japanese
Amba
Ambo
Andamanese
Copper Eskimo
Dorobo
Gisu
Hawaiians
Lau
Marshallese
Monachi
Motilon
Mutair
Orokaiva
Santa Ana
Tikopia
Tiwi
Taoda
Trumai

Do these results support the hypothesis that a strong relationship exists
between cultural “ferocity” and the tendency for a society to expand its
territory? Is this difference statistically significant?

The chi-square statistic for this 2 x 2 table is as follows:

O, E (0. —E) (0, —E)Y (O, — E)/E
14 =5 25 1.786

11 6 5 25 4.167
19 14 5 25 1.786
1 6 ~5 25 4.167

x°=11.9060
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This value is significant beyond the 0.01 level. To measure the strength
of this association, the ¢ coefficient can be computed from Formula
(14.18):

B (1) —11(19) _ —0.546
V/(20)(20)(28)(12)

Phi could also be computed directly from x* using (14.17):
qb2
1.906
T 0.298

which corresponds closely with the value ¢° = —0.546° = 0.2981 computed
from (14.18). Although the x? is statistically significant, the value of n =40
and ¢ = —0.546 warns that the relationship is not totally overwhelming.
In actual research we would also have corrected 2 for continuity.

14.6.2 Tau-b

The ¢ coefficient is clearly restricted to the 2 x 2 nominal format, but another
related measure, called tau-b (or 7,) expands ¢ to the general R x C contin-
gency table. Like ¢, 7, assumes only a nominal level of measurement. Tau-b was
initially defined in an important series of articles by Goodman and Kruskal
(1954, 1959, and 1963); also see Blalock (1972: 300-302).

To illustrate how 1, operates, let us return to Example 14.7. Remember that
O'Nell and Selby investigated the relationship between sex roles and participa-
tion in the Zapotecan cuelga. We found earlier that the ¢ coefficient for this
contingency table was ¢ = 0.42. Chi-square indicates this to be significant
beyond the 0.01 level.

Now we can examine this same situation using a different probabilistic
approach. Suppose that the ethnographer had missed the actual cuelga, but
was told that 38 of the 55 people in the village attended.

Attend cuelga (B,) 38
Did not attend
cuelga (B:) 17
55 residents of Santo Tomas Mazaltepec

Given only this limited census, how well could an ethnographer guess which
individuals attended, and which stayed away? We could, for example, line up
the 55 villagers and form them into two groups: One group of 38 who we
thought attended and the remaining 17 people who we figured stayed away.

Since we have no outside information, these two groups could be assigned
randomly. How many people are incorrectly classified? The probability that any
single informant is incorrectly placed into group B., those who attended the
cuelga, is clearly p(B.) = 17/55. Because 38 individuals must be independently
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assigned into group B, in the long run, we expect to make only 38 — 11,7 -
correct assignments to the group which attended the cuelga. Similarly, the ar:
of incorrectly assigning informants to the second group is p(B:) = 38/55. Sin:«
17 such assignments are made, we expect that again there will be 17(38/5%)
11.7 errors. (There is only 1 degree of freedom here, so an error in group
automatically implies a corresponding error in group B,.) Thus, we estimate »
total of 11.7+11.7=23.4 errors if the informants are randomly assigned !
' groups B, and B..
1 These errors were made by blind chance. What would happen if we were give:
additional information about the cuelga ? Suppose somebody told the ethnogy
: rapher that, of the 38 villagers attending, exactly 26 were males. Now we coult
1IN reconstruct the 2 x 2 contingency table considered earlier in Example 14.7

¥ Men  Women
: A, A Total
b \ Attend cuelga (B.) 26 12 38
¥ 4 ! Did not attend
] cuelga (B,) 4 13 17
Total 30 25 55

! Does a knowledge of the sex ratio at the cuelga help in deciding whether o
j not individual informants attended? Let's see.

L ¢ We know that 26 of 30 males in Santo Tomas Mazaltepec attended the cuelga

' ; Thus, the probability that any particular male did not attend is only p(A.B,) =
4/30. We must now guess at which 26 attended, so we can expect to make about
26(4/30) = 3.5 errors of assignment. We also expect to make about 4(26/30) «
3.5 errors when guessing which males did not attend (again, note the singl
degree of freedom). The probability that a randomly selected woman did no
attend the cuelga is p(A.Bz) = 13/25. A total of 12(13/25) = 6.2 errors are likaly
in deciding which women attended, and 13(12/25) = 6.2 errors are expecisi
among those who did not attend. Therefore, a total of four kinds of errors exis
when we try to reconstruct the cells of the contingency table: 3.5+ 3.5+6.2 «
6.2=19.4. These errors are expected when guessing attendance, once sex w
known.

So how much does a knowledge of this second variable improve our estimate
of who attended the cuelga ? The proportional diminution of errors is defined as

I (no. of errors when A is not known) — (no. of errors when A is known)
? no. of errors when A is not known

{(14.1%
For the example at hand,

23.4-19.4

=034 OV

We can say that a knowledge of the sex distribution saves us about 23.4~19.4 -
4.0 errors in the long run.

So 7, is a measure of just how well one variable predicts a second. In this
example we attempted to predict cuelga attendance based upon a knowledge
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of the sex ratio at the festival. That makes cuelga attendance (B) the dependent
(or predicted) variable and sex ratio (A) the independent (or predictor) variable.
If A and B are statistically independent, then a knowledge of A should have no
effect whatsoever on the outcome of B. Tau-b measures the strength of
association of A, given B.

This same positive association was assessed in Example 14.7, using another
coefficient, ¢. The coefficients ¢ and . are rather closely related: 7, = ¢°. In this
example, ¢ =0.42 and 7, =0.18. Tau-b is often more meaningful than ¢
because of the intuitively obvious meaning of ..

But 7, has a second and more important advantage over ¢. Remember that ¢
can be computed only for 2x2 contingency tables. Tau-b has no such
restrictions and is applicable to any R x C table. As an illustration of this, let us
once again consider Raymond Firth's kinship and residence cross-tabulation
for Tikopia (from Table 11.1).

Clan
A, A, A
Village Ravena Namo Faea Total
B,: Kafika 31 2 43 76
B.: Tafua 4 16 46 66
B.: Taumako 39 6 16 61
B.: Fanarere 10 3 2 15
Total 84 27 107 218=n

The chi-square statistic computed earlier indicates that the null hypothesis of
no association must be rejected. That is, that residence and kinship are not
statistically independent on Tikopia. The 7., coefficient now permits us to assess
just how much association exists between kinship and residence in this sample.

First consider this question: What does a knowledge of kinship (A) tell us
about residence (B)? Kinship is taken here to be the independent variable, and
we wish to assess its impact upon residence. If there were no association, the 7.
should be zero, and a knowledge of A would not reduce the errors of assigning
informants to residences. 7, is computed as before. First we find the number of
errors resulting in B when A is unknown. A total of 76 Tikopians live in the
village of Kafika. The probability of error in randomly assigning an informant to
Kafika is p(B:) = (218 —76)/218 = 142/218. In the long run, we can expect to
commit about 76(142/218) = 49.5 errors in assigning informants to Kafika. The
other three villages are handled in a similar fashion: For Tafua, we expect
66(152/218) = 46.0 errors; for Taumako, 61(157/218) = 43.9 errors; for Fanarere,
15(203/218) = 14.0 errors. A total of 49.5+46.0+43.9+ 14.0 =153.4 errors are
thus estimated for assigning villagers without a knowledge of their kinship. Now
we must find what improvement, if any, there is when clan affinities of the
villages are known. We know that 31 Tikopians of the Ravena clan live at Kafika,
so a total of 31(53/84) = 19.6 errors is likely. The errors for the other cells are

e —

—"d
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found in a similar manner:

Ravena Namo Faea

31(53/84) = 19.6 2(25/27) 43(64/107) = 25.7

4(80/84)= 3.8  16(11/27) 46(61/107) = 26.2
39(45/84) = 20.9 6(21/27) 16(91/107) = 13.6
10(74/84) = 8.8 3(24/27) 2(105/107)= 2.0

53.1 : 67.5

i i

Total errors in B, when A is known, are 53.1+15.8+67.5 = 136.4. The relative
improvement in estimating B from a knowledge of clan affiliation is thus

_153.4-136.4 _ 17.0
= 153.4 153.4

This is a rather low value, indicating only a weak association between kinship
and residence at Tikopia. y* and 7. tell us rather different things about the sams
sample. The chi-square statistic was quite large, suggesting that we reject M,
and conclude that kinship and residence are not independent at Tikopia. Bul «
warns us that this relationship, while significant, is not a very strong one. Eves
relatively weak associations can prove statistically significant, provided a largs
enough sample is involved (discussed further in Chapter 16).

Thus, 7» provides an analog to ¢, and 7, is applicable to the general R » €
case. But the conditions for 7, must be rather carefully defined. Remember the
guestion asked of the Tikopian sample: What does kinship imply about res:
dence? Residence was the dependent variable. Another question remains
unanswered by 7, : What does residence (B) tell us about kinship (A)7 Kinship s
now put in the dependent position, and this is a rather different situation A
second coefficient must be defined to assess the impact of B on A,

=0.11

= (no. of errors in A when 8 is unknown) — (no. of errors when B is known)

no. of errors when B is unknown
(14 208

The value for the Tikopian sample is 7, = 0.17, indicating a slightly stronges
value than for .. In general 7, # 7.

14.7 CURVILINEAR REGRESSION AND CORRELATION

® We didn't know we was poor until we went to towh.—R. Cash
Hancock

This consideration of correlation has stressed repeatedly that the techniques
apply only to situations in which linear relationships are suspected between
predictor and predicted variables. A host of other mathematical techniques exis
which consider nonlinear (that is, curvilinear) relationships. Unfortunatery,
once the linear approximation is known to be invalid, then a bewildering variety
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of nonlinear regression possibilities jump forth: exponential growth or decay,
asymptotic, logistic growth, polynomials of various orders, and so on. The
strategy of curvilinear regression consists of sorting through the numerous
possibilities at hand in hopes of finding a single curve which best fits the data.
Most of these techniques are more advanced than the present scope, and some
rather sophisticated analyses of variance designs are often required to deter-
mine just which line produces the “best fit."" For these reasons, a detailed
discussion of curvilinear regression is not attempted here, and the interested
reader is referred to Hays (1973: chapter 16) and Sokal and Rohlf (1969:
468-476). Computer programs for fitting curvilinear regression are also avail-
able in most comprehensive statistical packages for computers.

There is one technique of curvilinear correlation and regression, however,
which deserves mention, for it is not only indeed critical to many anthropologi-
cal situations, but is also relevant to the current approach. The technique is
logarithmic transformation and the principle is quite simple: Nonlinear relation-
ships are mathematically converted into linear proportions, and then the
standard linear models of correlations and regression can be applied as before.
The logarithmic transformation is thus really a device whereby the tedious
techniques of curvilinear regression can be avoided. There is a clear analogy
between the logarithmic transformation in regression and the transformations
considered earlier to approximate the normal distribution.

The simplest logarithmic relationship is the geometric series: Growing
populations of any species tend to expand geometrically until increase is
slowed by extraneous factors.® Let us consider the hypothetical situation in
which a lifeboat is washed ashore on the deserted island of Malthus. Coinciden-
tally enough, the boat contains two compatible strangers, one male and one
female. Upon landing and realizing they have no hope of escape, the strangers
decide first to be friends and second to attempt colonization of the island. The
population must increase rapidly so that the offspring can survive in this hostile
land, so they make an informal pact, agreeing that the rate of growth must be
exactly double: two children for every adult. Thus, while the first generation of
Malthusians number only two individuals—the original refugees—the second
generation will jump to a population of four (two children for each original
Malthusian). Once the second generation ceases reproducing, the third genera-
tion will number eight people. The fourth generation jumps to sixteen peaple,
and so on. This situation of geometric population increase is graphed in Fig.
14.6. The actual quantitative increase skyrockets as the generations go by, but
the basic rate of reproduction remains constant—two offspring for each adult.
This characteristic situation cannot be described by the linear regression and
correlation technigues considered thus far because the quantitative increase
obviously is not linear. But a very simple transformation will allow analysis of
this increase as if it were linear.

Let us take the common logarithm of the population within each generation
and plot these transformed population figures. The population of the first

“These extraneous influences constitute the “checks to increase’’ discussed by Charles Darwin.
Whether these influences originate from factors intrinsic within the population or from extrinsic forces,
such as food or weather, remains an open issue among population ecologists.
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generation is known to be 2, so log{population) is 10g., 2 = 0.301. The log of the
population of generation 2 is log 4=0.602 (exactly twice that of the firs
generation). The log of population in generation 3 is log 8 =0.903, exactly thres
times that of generation 1, and so forth. When log(popuiation) is plotted agains
time (in generations), a perfectly linear relationship results (Fig. 14.7). Bartleti's
method of regression determines the best fit to describe this line as

log ¥ = bX =0.301X

Few should be surprised that the slope of this line is log 2 = 0.301, and that the
Y-intercept is through the origin. The correlation coefficient obviously must be
r = +1.00. Although only ten generations were used in this computation, the
equation Y =0.301X allows projection for the population of any given genera
tion. The projected population for generation 15, for example, is

log ¥ =0.301(15)=4.5150
Y = antilog(4.5150)=32,734

Assuming constant conditions, the population of generation 95 is estimated to
be 3.935 x 10% individuals, obviously time for Zero Population Growth.

This simple logarithmic transformation of Y converts a clearly curvilinea:
relationship into a straight line, and the methods of regression and correlation
can be applied to these transformed scores with impunity. An even easie
method of analysis is available whenever only a best-fit regression line

necessary.
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Log {population)

Fig. 14.7

Especially constructed graph paper (semilog paper) automatically performs
the logarithmic transformation on a set of raw Y, scores (Fig. 14.8). The X-axis
remains on the common arithmetic scale, but the Y-axis is graduated along a
logarithmic progression. That is, the distance between 1 and 10 is exactly equal
to the distance between 10 and 100, which is exactly equal to that between 100
and 1000. The Y units are thus scaled in exponential fashion, just as one woulid
progress mechanically by using a table of common logarithms. The genera-
tional times are plotted on the horizontal axis as before, but the population
figures are plotted along the logarithmic divisions of Y. The Malthusian data in
Fig. 14.8 has been plotied on semilog paper, producing resulis identical to
those of Fig. 14.7, but without the bother of resorting to the logarithmic tables.
Semilog paper is handy whenever one variable must be transformed and when
only an estimate of the regression line is needed. Once the descriptive line of
best fit is drawn, the graph can be used in a fashion similar to an actual
regression equation, in order to predict interim values of Y from X. When the
points tend to scatter—that is, when p# +1.00—the graphic method provides a
useful first step in deciding whether or not a semilogarithmic relationship in fact
exists. If so, then the individual logs can be found in the tables, and the more
rigorous regression and correlation coefficients can be computed. If the points
turn out not to be linear, then little effort has been wasted on the preliminary
graphics.

A second sort of logarithmic transformation is available when both variables
must be converted from arithmetic to logarithmic scales. To illustrate the
allometric or log-log transformation, let us examine the relationship which has
come to be called Naroll's constant. Raoul Naroll correctly realized that the
relationship between human population and the floor areas they inhabit would
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be of interest to prehistoric archaeologists. Specifically, if a systematic relation:
ship could be demonstrated between population and floor area by using a
cross-cultural survey technique, then archaeologists would be able to estimate
prehistoric population size simply from a knowledge of site size. Naroll (1962a
table 1) constructed a cross-cultural sample of 18 societies: 6 each come from
North America and Oceania, 3 from South America, 2 from Africa, and 1 from
Eurasia. This sample has been reproduced in Table 14.10. Does there appear o
be a systematic relationship between the size of a community and the physical
area it occupies?

This is clearly a problem amenable to regression analysis, and a scattergram
of the data has been constructed in Fig. 14.9. A Model Il regression provides the
best linear fit to be

Y =939.3+0.487X

A
b=
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(after Naroll 1962a: table 1).

TABLE 14.10 Cross-cultural data relating floor area to population size

Largest Estimated Estimated
Settlement Population Floor Area
Society (L.S.) of L.S. of L.S.
Vanua Levu Nakaroka 75 412.8
Eyak Algonik 120 836
Kapauku Botekubo 181 362
Wintun ? 200 900
Klallam Port Angeles 200 2,420
Hupa Tsewenalding? 200 2,490
Haluk Ifaluk 252 3,024
Ramkokamekra Ponto 298 6,075
Bella Coola Bella Coola 400 16,320
Kiwali Oromosapua 400 1,432.2
Tikopia Tikopia 1,260 8,570
Cuna Ustupu 1,800 5,460
Iroquois ? 3,000 13,370
Kazak ? 3,000 63,000
lia Kasenga 3,000 47,000
Tonga Nukualofa 5,000 111,500
Zula ? 15,000 65,612
Inca Cuzco 200,000 167,220
200,000
150,000
100,000 -
50,000 —
25,000
12,500
1 T T 1

0 25.000

50,000

100,000

Floor Area (m”)

Fig. 14.9

150,000

200,000




432

This line has been fitted to the data, but the difficulties with this approach
should be obvious. The linear correlation for these data is r = +0.776, denaoting
that only about 60 percent of the variability in ¥ can be accounted for by X. The
scattergram indicates that because the bulk of Naroll's cases have a site size (X )
somewhat smaller than about 10,000 m®, the data points are hopelessly bunched
into the lower left of the scattergram while the point representing the Inca of
Cuzco lies isolated in the upper extreme, The comman linear regression derived
above has little relevance to the empirical scatter of points because this
relationship is obviously not linear. In fact, it has been difficult to represent all
the data on a single graph: When the Inca are included, the bulk of the cases
becomes blurred. Predictions emanating from a linear description of nonlinea:
phenomena area are generally found to be spurious and misleading.

But the data on Fig. 14.9 look suspiciously like an allometric function, as
estimated by the dashed line. If floor area and settlement size are indeed
allometric pairs, then a log-log transformation of the scales should provide a
more suitable procedure of estimation. Before attempting the transformation, il
is a good idea to see how well the allometric function fits the actual data.

Standard log-log paper provides a quick-and-dirty method for determining
whether or not an allometric curve sufficiently describes a set of data. To plol
data an log-log paper, follow these steps:

1. Determine the number of “‘cycles” present in the data. The number of
logarithmic cycles within a data set refers to the number of meaningful
decimal places. The population figures on Table 14.10 range between 75
and 200,000 people, encompassing the following decimal digits: tens,
hundreds, thousands, ten thousands, and hundred thousands. At least five
logarithmic cycles will be required to describe the populations. The floor
areas range from 412.8 to 167,220 m’, so at least four log cycles are
involved (hundreds, thousands, ten thousands, and hundred thousands)
Thus, the appropriate log-log paper must contain at least four or five
logarithmic cycles.

2. Establish arithmetic scales on the log-log graph. Following the conven-
tions of regression, the horizontal axis will depict X, so the X-axis is divided
into floor areas (expressed in sguare meters) and Y-axis is divided to
represent population. The scalar intervals follow an exponential rather
than arithmetic frequency, and therefore care must be taken to avoid errors
in transcription.

3. Plot the data points on the scattergram. If more than 50 or so points are
involved, the data should be grouped into a frequency distribution so that
the means of each frequency class can be plotted instead of each
individual point.

A perfectly allometric relationship will produce a straight line on log-log
paper; the degree of scatter represents the amount of deviation within the
sample. If log-log paper is unavailable, then the common (or natural) log table
conversions can be plotted on an arithmetic scale, but use of the log-log paper
saves the tedium of finding the 2n logs.

Once the log-log scattergram is available, one can readily determine whether
computing allometric regression is worthwhile. Figure 14.10 indicates that
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although a good deal of dispersion remains, a log-log transformation does
indeed render the points much more linear than merely the raw variates would
indicate. Thus, the graph indicates that log-log regression would be a suitable
technique to apply to Naroll's data.

The general allometric formula is expressed as

log ¥ =loga+blog X (14.21)

where a and b are the common coefficients of linear regression. As mentioned
earlier, the log-log transformation is not technically a method of curvilinear
regression; the variates are merely converted from a curvilinear {(geometric)to a
linear (arithmetic) scale of measurement and then treated as if they were linear.
Table 14.11 shows the computations necessary to find the proper regression
line for Naroll's population data. All raw scores are initially converted into
common logarithms; then the standard computations are used to find the value
of the two regression constants. The Model |l method of fitting the regression
line has been employed here because the X variable, the estimated floor area of
largest settlement, is a random variable, subject to errors of sampling. The final
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TABLE 14.11 Log-log transformation of Naroll's data on Table 14.10.

Society X log X Y logY

Kapauku 362 2.55871 181 2.25768

Vanua Levu 412.8 2.61574 75 1.87506

Eyak 836 2.92221 120 2.07918 log X, = 2.93179
Wintun 900 2.95424 200 2.30103 log ¥, = 2.23601
Kiwai 1,432.2 3.15600 400 2.60206

Klaltam 2,420 3.38382 200 2.30103

Hupa 2,490 3.39620 200 2.30103

Ifaluk 3,024 3.48058 252 2.40140

Cuna 5,460 3.73719 1,800 3.25527

Ramkokamekra 6,075 3.78355 298 2.47422

Tikopia 8,570 3.93298 1,260 3.10037

Iroquois 13,370 4.12613 3,000 3.47712

Bella Coola 16,320 4.21272 400 2.60206
lla 47,000 4.67210 3,000 3.47712
Kazak 63,000 4.79934 3,000 3.47712  log X, = 4.79528
Zulu 65,612 4.81697 15,000 417609 log Y. = 3.78873
Tonga 111,500 504727 5,000 3.69897
Inca 167,220 522329 200,000 5.30103

68.81904 _ _53.15784
—5 — = 382828 ¥ ==

_3.78873 — 2.23601

" 479528 — 2.93179
a’ = 2.953 — 0.833(3.823) = —0.232

log ¥ = 0.833 log X — 0.232

X= = 2.95321

'

allometric line of regression is given by
log Y = 0.833log X — 0.23

Sample values from this equation have been computed on Table 14.11, and the

line of regression has been fitted to the datum points of Fig. 14.11. Note how
much closer the data cluster around the log-log approximation than did the
same data about the simple arithmetic regression. The linear correlation
coefficient for the allometric plot is r = +0.878, accounting for over 77 percent
of the variance in Y. Thus, the log-log transformation represents 77% — 60% =
17% improvement over the simple, untransformed method.

So, the mechanics of allometric correlation and regression offer few addi-
tional computational challenges. But unexplained so far is just why the log-log
transformation works so handily and just what an allometric relationship really
signifies. One even hears occasional grumblings that transformations smack of
‘“‘cooking one's data’ in order to obtain more successful results. The fact is that
this general suspicion of data transformations is grounded in an interesting
ethnocentric fallacy. Many of our mathematically naive colleagues seem to feel
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that the common decimal scale is somehow more '‘natural,” that arithmetic
scales are somehow better equipped to reflect the characteristics of man and
nature. Until recently, Western schooling has inflated the importance of the
arithmetic relationship (largely by default) until we are led to look with suspicion
at any deviation from the commonplace decimal system. Recent developments
such as the “New Math” and talk of the United States converting to metric
equivalents has fortunately undermined some of this suspicion, but many social
scientists still seem to look askance at nonarithmetic scales. | should think,
however, that anthropologists, of all the social scientists, should be most
sensitive toward regarding one’s own system as somehow ‘“‘most natural’” or
“pbetter’’ than other systems; this is simply an ethnocentric viewpoint.
Specifically with reference to the log-log transformation, there are solid
reasons why the allometric relationship provides a more valid measuring scale
in some contexts. The allometric formula was originally introduced in 1881 by
Snell to express the relationship between brain size and body mass in mammals,
and allometric relationships have since been discovered to operate in a number
of social and biological circumstances. Specifically, the allometric equation
holds that the ratio between two variables is roughly constant. For example,
adult human weight is known to range roughly between 67 and 89 kg, over a
range of about 22 kg. In Macaca mulatta, however, the adult weight varies from
about 5.7 to 12.0 kg, a range of only 6.3 kg. Thus, it could be stated that the
weight of Homo sapiens is vastly more variable than that of the Macaca. But
such a facile pronouncement suffers from the fallacy of using observed range of
variability as a point of comparison. Such a measure is clearly unfair. A more
suitable method of comparison involves the relative proportion of variability,



436

such as the ration between the greatest and the least values. For man, this ru!

about 89/67 = 1.33, while for the macaque the ration.is 12/5.7=2.10. Clon
the macaque is somewhat more variable than man, and this relationship has 1
obscured by using the common arithmetic scaling procedure.

The concept of proportionate range can best be expressed in logarithn
form. If X, is the largest variate and X; is the smallest, then the logarithm of v .
ratio (X./Xz) = log X, —log X.. For man, this ratio was determined previousiy '
be about X,/X,= 1.328. But alternatively, one can state that, for Homo sap
log X,—log X.=log 1.328 = 0.51587. Because log X, is the logarithm ol v
heaviest human and log X: is the log of the lightest adult, then log X, — X, is 11
range of logarithms for modern human mass. That is, because few huma: .
weigh more than 89 kg (log 89.0 =1.94939) and few weigh less than 67,
(log = 1.82607), the range of log weights can be determined by subtraction
1.94939 —1.82607 = 0.12332, or about 0.12. This basic logarithmic, or allomets
difference is roughly constant over most human measurements, althoug!
sometimes variability may be exceedingly wide or narrow for specific chara:
teristics. The logarithmic range for human stature, for example, is known to be
only about 0.17. Thus, the ratios are roughly constant, even though ihe
individual arithmetic measurements vary widely. Thus, the logarithmic transto:
mations help isolate the fundamental principles underlying the jumble o
observable phenomena.

Allometric relationships have been recognized in a wide variety of biologics
and social phenomena. Demographers often apply the log-log formula 1o
analyze the growth of urban centers, and allometrics have been used s
describe changing word frequencies in languages. The size of the human
cranium is known to change allometrically with respect to body height as the
individual grows from childhood to maturity. Naroll has recently established &
log-log relationship between the number of occupational specialities and the
absolute population size. The interested reader is referred to the excellem
review article by Naroll and Bertalanffy (1965), in which the principle of
allometry is considered throughout the biological and social sciences. Simpson
Roe, and Lewontin {1960: chapter 15) also treat the mathematical aspects of the
allometric constant, with specific reference to animal growth.

SUGGESTIONS FOR FURTHER READING

Adkins (1964: chapters 12-14)
Blalock (1972: chapters 17, 18)
Siegel (1956)

Sokal and Rohlf (1969: chapter 15)

EXERCISES
14.1 Return to the variates in Exercise 13.1.

(a) Find the correlation coefficient for these data.
(b) Is this correlation significantly different from zero (at 0.05)?
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(c) Find the 95 percent confidence limits for this r.
(d) What percent of the variance in Y is explained by the linear
relationship existing between X and Y?

Return to the data of Exercise 13.3.

(a) Compute the correlation coefficient.

(b) Is this correlation significantly different from zero (at 0.05)?
(c) Compute the 95 percent confidence limits for r.

A correlation coefficient of 0.60 is found in a sample of 25 pairs. Is this
significantly different from zero at the 0.05 level of significance?

How large a correlation coefficient is needed from a sample of size 15 to
justify the claim that the variables are linearly related (at the 0.05 level)?

A sample of 95 pairs has a correlation coefficient 0.80. Is this signifi-
cantly different from p = 0.50 at the 0.05 level?

Use Spearman's re to test the hypothesis that the upper limit of
community size is directly proportional to the degree of economic
specialization (data from Ember 1963: table 1).

Relationship between upper limit of community size and number of types of
economic specialist.

Rank Order of Societies Community Size Economic Specialization

Yagua 1 6.5
Naron 2 1.5
Ulithi 3 11
Hupa 4 1
Ainu 5 1.5
Lesu 6 11
Egedesminde 7 11
Moken 8 11
Ramkokamekra 9 3.5
Bella Coola 10.5 3.5
Kiwai 10.5 14.5
Tikopia 12 22
Ona 14 6.5
Nuer 14 16
Samoa 14 175
Flathead 16 6.5
Hopi 17 20
Crow 18 145
Cuna 19 17.5
Nama 20 6.5
Dahomey 21 20
Zululand 22 20
Nupe 23 23
Inca - 24 24

Aztec 25 25
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14.7 Test the hypothesis in Exercise 14.6, using Kendall's tau. Which coefti
cient seems more appropriate? What are the strengths and weaknesses
of each?

9 14.8 The following data have been extracted from Ember (1963: table 2)

Relationship between relative importance of agriculture and number of
types of economic specialist.

Types of Economic Specialist

Agriculture 2-5 6 or more
Relatively unimportant 8 1
Relatively important 3 10

(a) Use an appropriate test to determine whether there is a statistically

1 significant relationship between agriculture and the types of
economic specialists (at 0.05).

(b) What is the strength of this relationship?

14.9 Ember also compared the importance of agriculture with the number of
types of political officials (1963: table 6).

Number of Types of Political Officials

Agriculture Fewer than 5 5 or more

Relatively unimportant 8
Relatively important 4 11

(a) Is this a statistically significant association (assume one-tailed test at
0.05)?
(b) Which association is stronger, that between agriculture and
economic specialization (Exercise 14.8) or the present exampie?
14.10 In Exercise 11.4, how strong is the association between the sex of

applicant and admission to graduate school? Which statistical measure
(correlation or significance) seems more appropriate here? Why?

1411 In Exercise 11.7, how strong is the relationship between Bugandan
drinking patterns and age?





