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Culture as Consensus: A Theory of
Culture and Informant Accuracy

This paper presents and tests a formal mathematical model for the analysis of informant responses
to systematic interview questions. We assume a situation in which the ethnographer does not know
how much each informant knows about the cultural domain under consideration nor the answers
to the questions. The model simultaneously provides an estimate of the cultural competence or
knowledge of each informant and an estimate of the correct answer to each question asked of the
informant. The model currently handles true-false, multiple-choice, and fill-in-the-blank type ques-
tion_formats. In_familiar cultural domains the model produces good results from as few as _four
informants. The paper includes a table showing the number of informants needed to provide stated
levels of confidence given the mean level of knowledge among the informants. Implications are
discussed.

HE CONCEPT OF CULTURE has long been the central focus of study in anthropology.

Writing in the early 1950s Kroeber (1952:139) observed that “The most significant
accomplishment of anthropology in the first half of the twentieth century has been the
extension and clarification of the concept of culture.”” More recently Goodenough
(1964:36) has asserted that ‘‘the anthropologist’s basic task, on which all the rest of his
endeavor depends, is to describe specific cultures adequately. . . . Culture, being what
people have to learn as distinct from their biological heritage, must consist of the end
product of learning: knowledge, in a most general, if relative, sense of the term.” In this
paper we present a way of describing and measuring the amount and distribution of cul-
tural knowledge among a group of informants in an objective way.

We are reminded of the need for an objective approach to culture and ethnography by
the recent controversy generated by the publication of Derek Freeman’s book, Margaret
Mead and Samoa (1983). In the introduction to a special section of the American Anthropol-
ogist, Ivan Brady (1983:908) commented that ‘“The book has been reviewed all over the
world and has raised questions of authenticity and viability in ethnographic research. . . .
One broad but undetermined topic of enduring value that emerges from these essays, it
seems to me, is the problem of how anthropologists get to know what they know and write
in the first place.” The model provided in this paper is an attempt to make objective the
criteria by which we might measure our confidence in inferring correct answers to cul-
tural questions, i.e., to help answer the epistemological question of “How do we know
when we know?”’
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Despite examples of differing views of ethnographers such as Mead and Freeman in
Samoa and Redfield and Lewis in Tepoztlan, Mexico, anthropologists may tend to un-
derestimate the probable effects of the ethnographer in selecting and shaping the data
and in forming impressions contained in the final ethnographic report. This points to our
need to find more objective ways to investigate culture.

The assumption in fieldwork has been that the investigator is a valid and reliable in-
strument and that the informant provides valid and reliable information. We suggest that
informants’ statements should be treated as probabilistic in character. When, for exam-
ple, an informant states that the name of an object is ““X,” we should assume that there
is some probability (that we can estimate) that the statement is correct. This probability
may be close to 1 in the case of a very knowledgeable informant and close to 0 in the case
of an uninformed informant. The more informants there are who agree (when questioned
independently) on an answer the more likely it is to be the correct cultural response.

Informant interviews are a main source of data for anthropology. Evaluation and anal-
ysis of such data, including theory construction and testing, constitute a vital part of the
research activity of the profession. Frequent disagreement among informants confronts
the investigator with two major problems: first, how can the “‘cultural knowledge” of
different informants be estimated, and, second, how can the ““correct’” answers to specific
questions be inferred and with what degree of confidence? This paper supplies a formal
approach that answers these two questions for a variety of cultural information domains
that lend themselves to systematic question formats, e.g., true-false, multiple-choice, fill-
in-the-blank.

The aspect of culture that our theory attempts to account for is the part that is stored
in the minds of its members. Roberts (1964:438—439) has said that ““It is possible to re-
gard all culture as information and to view any single culture as an ‘information economy’
in which information is received or created, stored, retrieved, transmitted, utilized, and
even lost. . . . In any culture information is stored in the minds of its members and, to a
greater or lesser extent, in artifacts.” In a similar vein, D’Andrade has developed the
notion of culture as a shared and learned “‘information pool.”

It is not just physical objects which are products of culture. . . . Behavior environments, con-
sisting of complex messages and signals, rights and duties, and roles and institutions, are a cul-
turally constituted reality which is a product of our socially transmitted information pool. . . .
In saying that an object—either a physical object like a desk, or a more abstract object like a
talk or a theorem—is a product of culture, I mean that the cultural pool contains the information
which defines what the object is, tells how to construct the object, and prescribes how the object
is to be used. Without culture, we could not have or use such things. [1981:180]

The size of the cultural information pool virtually dictates that knowledge be distrib-
uted and shared. Roberts points out that there is a limit to what an individual or com-
bination of individuals can learn and that “it is safe to assert that no tribal culture is
sufficiently small in inventory to be stored in one brain’ (1964:439). D’Andrade, in a
closely reasoned discussion, places some loose bounds on the possible size of the infor-
mation pool that an individual may control. “Upper limits can be obtained by consid-
ering time constraints; e.g., to learn ten million chunks would require that one learn more
than a chunk a minute during every waking hour from birth to the age of twenty”
(1981:180). The large size of the information pool is also related to the division of labor
in society. “One of the characteristics of human society is that there is a major division
of labor in who knows what’ (D’Andrade 1981:180). Clearly we cannot study all of cul-
ture but rather we must have a strategy for sampling smaller, coherent segments of the
total information pool constituting culture. We also need to make a provision for the pos-
sible unequal distribution of knowledge among “experts” or specialists and nonspecial-
ists in a society.

One segment of culture that provides a reasonable focus derives from Kroeber’s (1948)
classic discussion of ““‘systemic culture pattern.” Systemic culture patterns are character-
ized as coherent subsystems of knowledge that tend to cohere and persist as a unit limited
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primarily to one aspect of culture. A systemic culture pattern has sufficient internal or-
ganization that it may diffuse as a unit. As examples, Kroeber (1948) discusses plow ag-
riculture and the alphabet. Roberts and his colleagues have studied such diverse systemic
culture patterns as eight-ball pool (Roberts and Chick 1979), pilot error (Roberts,
Golder, and Chick 1980), women’s trapshooting (Roberts and Nuttrass 1980), and tennis
(Roberts et al. 1981). They have demonstrated that the relevant behavior events for each
of these domains are coded into what Roberts has called ‘‘high-concordance codes” that
cultural participants understand and use with ease.

Each systemic culture pattern may be thought of as having an associated semantic
domain that provides a way of classifying and talking about the elements in the culture
pattern. A semantic domain may be defined as an organized set of words (or unitary
lexemes), all on the same level of contrast, that jointly refer to a single conceptual sphere,
e.g., a systemic culture pattern. The words in a semantic domain derive their meaning,
in part, from their position in a mutually interdependent system reflecting the way in
which a given language classifies the relevant conceptual sphere. This definition corre-
sponds to Frake’s discussion on levels of contrast (1961). Examples of semantic domains
include kinship terms, linguistic “‘tags’ for the behavior events in games like tennis (Rob-
erts et al. 1981), manioc names in Aguaruna (Boster 1986), disease terms and character-
istics (Weller 1983, 1984a, 1984b), Buang clan membership (Sankoff 1971), and color
terminology.

A recent example of ethnographic data that could be analyzed by our theory was col-
lected by Boster (1986) on Aguaruna manioc classification. He asked informants to iden-
tify growing manioc plants in a garden. “Data were collected by guiding informants
through the gardens, stopping at each plant and asking, waji mama aita, ‘What kind of
manioc is this?” > Boster concluded that the more an informant agreed with others the
more knowledge that informant had about manioc. Since he was able to assess differences
among informants as to cultural knowledge, he was able to establish that women knew
more than men and that women in the same kin and residential groups were more similar
to each other in knowledge than nonrelated women.

In a test-retest analysis he found that “within informant agreement is strongly corre-
lated with between informant agreement” (Boster 1986). Since the informants who agree
with the group the most on the first test are those who agree most with themselves on the
retest, Boster argues that agreement among informants indicates knowledge. The results,
he says, “helped confirm the inference of cultural knowledge from consensus.” We agree
with Boster that knowledge can be inferred from consensus.

The aim of this paper is to derive and test a formal mathematical model for the analysis
of informant consensus on questionnaire data that will stimultaneously provide the fol-
lowing information: first, an estimate of the cultural competence or knowledge of each
informant, and second, an estimate of the correct answer to each question asked of the
informants.

The plan for the remainder of the paper is as follows: first, after a brief, informal verbal
description of the theory we will present the formal mathematical model for the analysis
of true-false, multiple-choice, and fill-in-the-blank profile data. Derivations are kept as
simple as possible. Further technical details on the model and related models can be
found in Batchelder and Romney (1986). Applications of earlier informal versions of the
theory can be found in Romney and Weller (1984), Weller (1984b), and Weller, Romney,
and Orr (1986). Second, we apply the model to quasi-experimental data consisting of a
general information test where answers are known a priori to illustrate how the model
works. We also analyze a small subset of informants and discuss sample size requirements
of the model. Third, we apply the model to some field data on disease classification col-
lected in Guatemala. This illustrates the application of the model in a naturally occurring
situation where the answers are not known a priori and the results may have important
theoretical implications. Finally, we will discuss the implications of the model and relate
it to some of the current research concerns in anthropology.
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Description and Development of the Formal Model

The central idea in our theory is the use of the pattern of agreement or consensus
among informants to make inferences about their differential competence in knowledge
of the shared information pool constituting culture. We assume that the correspondence
between the answers of any two informants is a function of the extent to which each is
correlated with the truth (Nunnally 1978:chap. 6). Suppose, for example, that we had a
“perfect set” of interview questions (cultural information test) concerning the game of
tennis. Suppose further that we had two sets of informants: tennis players and non-tennis
players. We would expect that the tennis players would agree more among themselves as
to the answers to questions than would the non-tennis players. Players with complete
knowledge about the game would answer questions correctly with identical answers or
maximal consensus, while players with little knowledge of the game would not. An insight
like this one allowed Boster to identify those informants with the most cultural knowledge
in his study of manioc plants.

We are assuming that there exists a “high concordance code” of a socially shared in-
formation pool concerning tennis, that informants vary in the extent to which they know
this culture, and that each informant answers independently of each other informant.
Once we know how ““competent” each informant is we can figure out the answers to the
questions by weighting each informant’s input and aggregating to the most likely answer.
That is, we put more weight on the more knowledgeable informants than the less knowl-
edgeable ones. The model we develop is simply an elaboration and formalization of these
ideas and their implications.

Although the model and associated data analysis methods are new, we incorporate
derivations and concepts from previous well-established theories. The major sources of
concepts include the following: the overall structure as well as more general ideas are
influenced by signal detection theory (Green and Swets 1966). Approaches used by psy-
chometricians in test construction to study items were adapted to apply to informants
rather than items (Lord and Novick 1968; Nunnally 1978). There are structural identities
to latent structure analysis (Lazarsfeld and Henry 1968) although again our applications
are to informants rather than questions. The relevance of the Condorcet jury trial prob-
lem is also important (e.g., Grofman, Feld, and Owen 1983). Techniques common in
decision analysis like Bayesian estimation are common in many fields and can be found
in any mathematical statistics book (e.g., Hogg and Craig 1978).

At this point we need to introduce some definitions and notation in order to present
the formal model. We start with an informant by question Response Profile Data Matrix
of the following form:

Question
Informant 1 2 . . k . . M
— —/
l Xl 1 Xl 2 Xlk Xl M
XZI X22 XZI: XQM
(1
x =
1 X, X, Xy Xou
N | Xnw Xn : : Xk : : Xym

where X, is the ith informant’s response to the £th question. There are N informants and
M questions. The model assumes a questionnaire where each question has L possible
response alternatives with only one “correct” answer. In a true-false questionnaire L =
2 and the response X, would be ““true” or “false” (coded, perhaps, as 1’s and 0’s, respec-
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tively). In a multiple-choice questionnaire, for example, there might be four alternatives
so that L = 4 and the possible responses X, might be coded as “A,” “B,” “C,” or “D.”
A fill-in-the-blank questionnaire can be thought of as a special case of the model with a
very large value of L, and X, would be the actual, possibly edited, written response (pos-
sibly blank) of the ith informant to the £th question.

Our notational conventions are:

A. Response Profile Data. X = (X,)y x »,where X, is the subject ¢’s response to question & coded
as described above.
B. Answer Key. Z = (Z,),,,,where Z, is the code for the correct answer to question £ (initially
unknown to us).
C. Performance Profile Data. Y = (Y,)y where
1 if subject i is correct on item £
r.={

0 if subject i is wrong on item £.

D. Response Bias.' g, is a bias to respond with an alternative / when informant i does not know
answer. The range of g, is between 0 and 1. No bias is 1/L, e.g., in true-false a bias of 1/2 means
that if the informant does not know the answer to the question that they will choose either
alternative with equal probability. In the derivations below we assume no bias.

E. Cultural Competence. D;is the probability that informant i knows (not guesses) the answer to
a question, where 0<D,<1, and negative D,’s are not allowed by model. This is a theoretical
parameter of the model and cannot be observed directly. We assume each informant has the
same D, for all questions.

Since the notation is crucial to understanding what follows we will review and expand
on the above. The response profile data X is the original raw data from the interviews,
and it simply refers to the whole profile data matrix in Eq. 1 consisting of N rows of in-
formants and M columns of questions. The answer key (Z) can be estimated from the
model but it is not known a priori, it consists of a single vector or line of data that contains
the code for the correct answer. In anthropological work we usually do not know the
correct answers a priori and the model provides a method for inferring the answer key
from the response profile data. When the response data has been recoded as correct or
incorrect based upon an answer key we call it performance profile data denoted by Y. In
psychological test theory it is usually assumed that the investigator knows the answers to
the questions while in anthropological fieldwork we do not normally know the answers a
priori and hence the need for the model.

The assumptions of the formal model may be stated as follows:

Assumption 1. Common Truth. There is a fixed answer key “applicable” to all informants,
that is, each item k has a correct answer, Z,, k = 1,2,. . .,M. This simply states the assumption
that the informants all come from a common culture, i.e., that whatever the cultural real-
ity is, it is the same for all informants in the sample.

Assumption 2. Local Independence. The informant-item response random variables satisfy con-
ditional independence, that is,

| Pr (X,] Z,)

(2) Pr{(Xu)nxar I (Z)ixad =

I =z
E=E

for all possible response profiles (X;) and the correct answer key (Z,). This assumes that
each informant’s answers are given independently of each other informant. The correla-
tions among informant’s answer patterns are an artifact of the extent to which each is
correlated with the “answer key,” i.e., Z. To the extent that the data fit the model cor-
relations among informants will be high if computed on the response profile data but close
to 0 if computed on the performance profile data.
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Assumption 3. Homogeneity of Items. Each informant i has a fixed “cultural competence,”
D,, over all questions. This is a strong assumption that says that questions are all of the same
difficulty level. In some situations one might want to make a weaker assumption: namely,
that the informants who do better on one subset of the questions will do better on another
subset of questions. This generalization might be called the monotonicity assumption and
is related to ensuring that the questions are drawn from a coherent domain. Thus, for
example, if the tennis experts do better than the nonexperts on one part of the questions
concerning tennis, they should do better on another part concerning tennis. The analysis,
however, has proven to be very robust in practice under the more restricted homogeneity
assumption.

We might note that these assumptions define the ground rules for the operation of our
model. They also make it possible to make formal derivations in mathematical terms. It
is important to stress that not all response profile data will conform to these assumptions.
They require, for example, that all informants are positively correlated with each other
(except for sampling variability). In effect this means that our theory assumes that if two
people are members of the same culture that they are responding to the questions in terms
of a common understanding, i.e., the culture is similar for both informants. By similar we
do not mean they will respond identically since there will be misunderstanding of the
questions, random guesses, etc. The model measures the shared knowledge of the culture.
True negative correlations among informants would mean that they do not have common
knowledge in the domain sampled by the questions. Thus when the empirical data show
that any of the assumptions are violated then the model does not apply and we infer one
of the following: (1) we are not dealing with a culturally defined domain, (2) the infor-
mants do not share common knowledge of the cultural domain, or that (3) something else
has gone wrong. We will give an example of a violation of the assumptions later.

The formal derivations of the model will be presented in the following steps: first, we
derive a method for estimating D,, the cultural competence, of each informant from the
data in the response profile matrix. This estimation is made on the basis of the pattern of
shared knowledge (as indexed by proportion of matched responses among all pairs of
informants), using the notion that the more consensus the more knowledge. Second, we
show how to make inferences as to the correct answers together with statistical confidence
levels based on an application of Bayes’ Theorem in probability theory (for example,
Mosteller, Rourke, and Thomas 1961:146). The model we present is a special case of a
more general family of models (Batchelder and Romney 1986) and is referred to there as
the High Threshold Model.

Derivations from the Model

We now turn to the task of deriving the cultural competence of the informants from the
proportion of matches among them. The parameter D, is informant #’s cultural compe-
tence, namely, the probability that informant ¢ “knows” the correct answer to any item
(0s=D;<1). If the informant does not know the correct answer (with probability [1-D,]),
then they guess the answer with probability 1/L of a correct answer, where (1-D),) is the
probability of not knowing the answer and L is the number of alternative answers to the
question. For example, assume an informant’s competence is .7 (D, = .7) for a five-item
multiple-choice questionnaire. In addition to expecting that the informant will get .7 of
the questions correct we would also expect the informant to get some of the .3 (1-D))
questions correct by guessing. Namely, 1/L or 1/5 of the remaining .3 of the questions or
(1-D))/L, i.e., .3 X 1/5 = .06 would be guessed correctly. We add this to the .7 giving a
total expected correct of .76. More generally the probability of any question & being an-
swered correctly by any informant i is given by

(@)  Pr(Yy=1) =D+ (I-D)/L,
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and the probability of answering incorrectly is given by
Pr(Y, = 0) = (1-D)) (L-1)/L.

Note that even if we knew the proportion of questions the informant got ‘““correct”
(which we do not usually know) we could not observe the effects of the theoretical param-
eter D, directly because the proportion correct includes the proportion the informant got
right by guessing. In case the correct answer key is known it is easy to simply count the
number of correct responses and divide by A, the number of questions, to obtain the
proportion of correct responses T for informant i. In order to obtain an estimate of D, we
use the empirically observed Tin place of Pr(Y, = 1) in Eq. 3 and solve for D, to obtain

@) D= (LT-1)/(L-1),

where the hat over the D, is the usual convention to indicate that it is an estimate of the
underlying competency D, All Eq. 4 does is to adjust the proportion correct for guessing,
and this is used routinely in aptitude testing by ETS and other agencies.

The anthropologist, unlike the test-theorist, does not know the correct answers in ad-
vance so that we cannot use Eq. 4 to estimate the D,. Fortunately, and perhaps surpris-
ingly, it is still possible to obtain estimates of the D;’s by examining the proportion of
matches among all pairs of informants. The derivation of the procedure follows.

Assume two informants, i and j, whose probabilities for a correct response, from Eq. 3,
are:

for informant i,

Pr(correct) = D, + (1-D)/L,
and for informant j,

Pr(correct) = D; + (1-D,)/L.

Now we want to know the probability of i and j matching responses on any question &
in terms of the competence, D,and D;, of each. The possible ways of matching are:

1. Both know the answer to the item with probability D,D, that is, the probability that
i knows the item times the probability that j knows the item.

2. One informant knows the answer to the item and other guesses the item correctly.
This occurs in two ways: i knows the item and j guesses correctly with probability D, (1-
D,)/L and j knows the item and i guesses correctly with probability D, (1-D,)/L.

3. Neither knows the item but both guess the same response? to the item which occurs
with probability

L
(1-D) (1-D)) 121 (1/L)* = (1-D,) (1-D,)/L.
Let us introduce a random variable for matches,

M, =

b,

{ 1if i and j match on question &

0 otherwise.

Then adding all the four possibilities we get
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Pr(M,,=1) =
DD, + D(1-D)/L + D(1-D)/L + (1-D)(1-D))/L,

which reduces algebraically to

(5) Pr(M,,=1) = DD, + [1-D,D,)/L.

Since Eq. 5 does not have the question subscript £ on the right-hand side, we can re-
place Pr(M,,= 1) by the observed proportion of matches, M, from the data on all ques-
tions and solve for D,D;to obtain an estimate of D.D; given by

A
(6) DD, = (LM1)/(L-1).

Note that Eq. 6% is a close parallel to Eq. 4. Unlike Eq. 4, however, Eq. 6 cannot be
used directly to provide separate estimates of D,;and D; because there are two unknown
competencies and only one equation. The key to the method of estimating competencies
lies in the fact that the response profile matrix X provides N(N-1)/2 independent equa-
tions like Eq. 6, one for each distinct pair of informants. Thus, there are N(N-1)/2 equa-
tions in terms of N unknown competencies, so that as long as N = 3, there are more
knowns than unknowns.

In order to write out the entire set of equations for solution, we define

(1) MY = (LM D)/(L),
which is an empirical point estimate of the proportion of matches between informants i

and j corrected for guessing (on the assumption of no bias).
The set of equations can be written in matrix notation as follows:

D My, - My MY D,
M3 D - - My - M3, D,
8) . . . . .
. . . . = . (D,,D,...,Dj..,DN)
MY M3, : : M:r, . : D, D,

where, of course, M} = M} for all pairs of informants i and ;.

Equation 8 represents an overspecified set of equations and because of sampling variability it is un-
likely that they can be solved exactly. However, it is possible to obtain an approximate solution to Eq.
8 and thereby obtain estimates of the individual competencies D,. The general approach to such
problems is to select some criteria of goodness of fit, say least squares, and then to cal-
culate estimates D, that minimize the sum of the squared discrepancies between observed
and predicted values of M. A least squares fit of the equation above is directly obtainable
through the use of a version of factor analysis called the minimum residual method, first
described by Comrey (1962). A version that accomplishes the same end is available on
SPSS in the PA2 option (Nie et al. 1975:480). In our application we specify just one factor
that gives direct estimates of the D, for each individual. If the assumptions hold there
should only be a single factor so that the first latent root should be large with respect to
all other latent roots (see Lord and Novick 1968:381-382). We will discuss the criteria
for fitting the model later in the paper. In any event, this procedure gives us the estimates
of each informant’s cultural competence D, in terms that can be interpreted as the pro-
portion of the questions they actually ‘“know.”
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We now turn to the problem of how to infer the correct answers to the question. We
give a formal presentation of a Bayes’ Theorem approach to the problem in Appendix A.
Now we give an example meant to give an intuitive feel for the approach to be taken.

To illustrate our approach, suppose we have only two informants, 1 and 2, and one
true-false question. Suppose we know the competencies to be D, = .8 and D, = .2. If we
know nothing at all, our a priori probabilities that the question is correctly answered true
or false are .5 and .5, respectively. However, when we know the informants’ responses,
we are in a position to compute a posteriori estimates of the probabilities of the correct
answer being true or false. The basic information is given in Table 1. The four logically
possible response patterns involving two informants and one question are presented,
where 1 codes a “true’ response and 0 a ““false” response. The probability of each pattern
is computed on the assumption the correct answer is “true’ and on the assumption the
correct answer is “false.” For example, assume the correct answer is ‘“‘true,” then the
probability of both informants answering true (response pattern [1,1]) is the probability
of the first informant being correct times the probability of the second informant being
correct. This is computed from the competence using Eq. 3 with L = 2. Thus we have
(.8 + [1-.8]/2) x (.2 + [1-.2]/2) = .54 as shown in Table 1 for a response pattern of
(1,1) where the correct answer is “true.”

Bayes’ Theorem in elementary probability theory provides the machinery for comput-
ing the a posteriori probabilities of true and false, respectively, given the a priori proba-
bilities and the “evidence” of the informants’ responses. Let X, and X, be the responses
of the two informants, Pr(T) and Pr(F) be the a priori probabilities, and Pr(T | <X,
X,>), Pr(F | <X,, X,>) the desired a posteriori probabilities. Then Bayes’ Theorem,
adapted to our case, requires

9  PrT|<X,X,>) = Pr(<X,, X,> | T)Pr(T) ,
Pr(<X,, X,> | T)Pr(T) + Pr (<X,, X,> | F)Pr(F)

where, for example, Pr(<X,, X,> | T) is the conditional probability of the evidence if the
correct answer is true. Columns 2 and 3 in Table 1 give the conditional probabilities of
the evidence given the correct answer is T or F, respectively, and columns 4 and 5 give
the a posteriori probabilities from Eq. 9. For example, suppose X, = 1 and X, = 1, then

Pr(T|<1,1>) = 94 X 1/2 = 93]
54 X 1/2 + .04 X 1/2

which is the first entry in column 4. The rest of the values in columns 4 and 5 are obtained
similarly from Eq. 9 and from the fact that Pr(F | <X, X,>) = 1 - Pr(T | <X,, X,>).
In Appendix A, the approach illustrated by this sample example is extended to cover
the general case. This requires extension in the following ways: (1) it must handle the
case of an arbitrary number of possible answers; (2) it must allow the evidence to come

Table 1
Illustrative data for computing a posteriori probabilities for a single question given two
informants with competencies of .8 and .2, respectively.

Probability if correct answer A posteriori probability

Response pattern is true is false for true for false
11 .54 .04 931 .069
1 0 .36 .06 .857 .143
0 1 .06 .36 143 .857
00 .04 .54 .069 93